Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series / Editor in Chief: W. Martienssen

Group III: Condensed Matter Volume 41

Semiconductors

Supplement to Vols. III/17, 22 (Print Version) Revised and Updated Edition of Vols. III/17, 22 (CD-ROM)

Editors: O. Madelung, U. Rössler, M. Schulz

Subvolume A2 Impurities and Defects in Group IV Elements, IV-IV and III-V Compounds

Part α : Group IV Elements

Supplement to Vol. III/ 22b (Print Version) Revised and Updated Edition of Vol. III/22b (CD-ROM)

Edited by M. Schulz

Authors: C. A. J. Ammerlaan, H. Bracht, E. E. Haller, R. Murray, R. C. Newman, R. Sauer, N. A. Stolwijk, J. Weber, W. Zulehner

4.1.3 Paramagnetic centers

4.1.3.1 Introduction

Electron paramagnetic resonance (EPR) spectra are conveniently analysed using a spin Hamiltonian. In the concept of the spin Hamiltonian, the energies of the levels comprising the ground state are expressed in terms of a polynomial in the effective electron spin operator S and, when magnetic nuclei are present, nuclear spin operators I. A small number of constants in the spin Hamiltonian H can accurately describe the observed transitions. A general form suitable to analyse and identify the spectra observed in diamond is $H = \Sigma H_i$. In the spin Hamiltonian required to analyse the spectroscopic data, the following terms may appear:

Zeeman effect

$$H_1 = \mu_{\rm B} \boldsymbol{B} \cdot \mathbf{g} \cdot \boldsymbol{S}$$

 H_1 describes the electronic Zeeman effect. All paramagnetic centers have this interaction. Due to the small value of the spin-orbit coupling constant in diamond and the strong crystal field in the solid which effectively quenches orbital contributions to the magnetic moment, the g values for nearly all centers are close to the free-electron value g = 2.0023. Identification of spectra on the basis of the g-tensor only, the common situation for centers in silicon, is not possible in diamond. Other spin-Hamiltonian constants or characteristics of the spectra have to be used additionally.

Zero-field splitting

$H_2 = S \cdot D \cdot S$

 H_2 represents the zero-(magnetic)-field splitting. The interaction is only present for electron spin $S \ge 1$. The identification of centers produced by irradiation, notably several of the R and W spectra, mainly rests on the symmetry and components of the **D**-tensor.

Higher-order Zeeman effect

$$H_3 = g_2 \mu_{\rm B} (B_{\rm x} S_{\rm x}^3 + B_{\rm y} S_{\rm y}^3 + B_{\rm z} S_{\rm z}^3)$$

 H_3 represents the rather rare higher-order Zeeman effect which can be present in case $S \ge 3/2$, and has the given form for centers of cubic symmetry. The interaction in diamond has been reported for one center only, i.e. the acceptor-related spectrum NL1. For $S \ge 2$, spin Hamiltonian terms of fourth order in S_x , S_y and S_z may have to be included, even in the case of cubic symmetry. Such situations have been considered, e.g., for spectrum V⁰(⁵A₂).

Normal-strain effect

$$H_4 = b(\varepsilon_{xx}S_x^2 + \varepsilon_{yy}S_y^2 + \varepsilon_{zz}S_z^2)$$

 H_4 expresses the effect of normal strains of the diamond crystal on the spectrum in terms of the deformation potential constant b and normal components of the strain tensor ε_{xx} , ε_{yy} and ε_{zz} . This term was only reported for the analysis of acceptor-related spectrum NL1.

Shear-strain effect

$$H_5 = (d\sqrt{3}/3)[\varepsilon_{xy}(S_xS_y + S_yS_x) + \varepsilon_{yz}(S_yS_z + S_zS_y) + \varepsilon_{zx}(S_zS_x + S_xS_z)]$$

 H_5 expresses, similar to the previous term, the effect of distortion of the crystal on the energy levels. The deformation potential constant is *d*, the components of the shear strain are ε_{xy} , ε_{yz} and ε_{zx} . This term was only reported for spectrum NL1.

Nuclear Zeeman effect

$H_6 = -g_n \mu_N \boldsymbol{B} \boldsymbol{\cdot} \boldsymbol{I}$

 H_6 gives the Zeeman interaction energy for a nucleus with spin *I*. The nuclear Zeeman splitting is not observable in first order in EPR. It can be measured by electron-nuclear double resonance (ENDOR) and then leads to unambiguous identification of an impurity through the nuclear magnetic moment ($g_n\mu_N I$). In the form of self-ENDOR this has been applied to establish the presence of nitrogen in centers N1, N2, N3, OK1, P1, P2, W7, W15 and W24. More recently, ligand ENDOR studies in ¹³C enriched man-made diamond have revealed structural information on defect geometries for the N2, P1, S1 and W8 centers. Matrix ENDOR on hydrogen was reported for CVD grown polycrystalline diamond.

Hyperfine interaction

$H_7 = S \cdot A \cdot I$

 H_7 describes the hyperfine interaction between the electron(s) in the paramagnetic defect and a nucleus with spin I. The term has to be summed over all nuclei with non-zero spin for which an interaction is resolved. For spectra in natural diamond always the isotope ¹³C, with nuclear spin $I = \frac{1}{2}$, has to be considered. Due to the low abundance 1.1% of this isotope, the structural details in spectra related to this nuclear interaction have a relatively low intensity. Nitrogen, with I = 1 of the 99.63% abundant isotope ¹⁴N, is the most common impurity in diamond. The hyperfine splitting into three sets of components reveals the presence of one or several nitrogen atoms. Actual observations of hyperfine interactions have been made for carbon, nitrogen and a few other magnetic impurity isotopes (hydrogen, boron, phosphorus, cobalt, nickel, copper). The hyperfine interaction can give characteristic structure to the EPR spectra, valuable for identification and further understanding of the atomic and electronic structure of the centers.

Nuclear quadrupole interaction

$H_8 = I \cdot \mathbf{Q} \cdot I$

 H_8 represents the nuclear quadrupole effect. Only effective when $I \ge 1$, for example for ¹⁴N, but not for ¹³C. Being a purely nuclear interaction it is difficult to observe in EPR (Ref. 65L1). ENDOR allows a more accurate determination of the quadrupole tensor, as reported for spectra N1, N3, OK1, P1, P2, W7, W15 and W24.

For further information on EPR, e.g. on symmetry aspects, see the section on Paramagnetic Centers in Silicon (4.2.6). Spectrum labels selected by the authors and already in use in the literature were copied, such as NE1 to NE8, NIRIM-1 to NIRIM-8, Mu, Mu*, S1*, β and V⁰(⁵A₂). To distinguish the spectra of two different centers with the label H2, they were specified as H2(ht) (ht for heat treatment) and H2(H) (H for hydrogen). Spectra which so far were not labeled, have been given a designation reflecting the city of their first publication, i.e. the convention adopted for silicon has been followed. The introduced labels are AM1 (Amsterdam), BI1 (Birmingham), CL1 (Clayton), GRE1 (Grenoble), KI1 (Kiev) and MA1 (Makeyevka). These labels are to be considered as provisional; they are to be replaced by labels with more physical significance as soon as the required information becomes available in reliable form.

4.1.3.2 EPR spectra

Spectrum A1	
Symmetry:	monoclinic-I
Spin:	S = 1
g-tensor:	$g_1 = 2.0021, [0 , -0.7071, +0.7071]$
	$g_2 = 2.0016$, [+ 0.4540, + 0.6300, + 0.6300]
	$g_3 = 2.0026$, $\ [-0.8910, +0.3210, +0.3210]$
D-tensor:	$D_1 = -74 \text{ MHz}, \parallel [0, -0.7071, +0.7071]$
	$D_2 = +154 \text{ MHz}, [+0.1426, +0.6999, +0.6999]$
	$D_3 = -80 \text{ MHz}, [-0.9898, +0.1009, +0.1009] $
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 2 sites
	$A_1 = 29.1 \text{ MHz}, \parallel [0, +0.7071, +0.7071]$
	$A_2 = 38.1 \text{ MHz}, [+0.7986, -0.4254, +0.4254] $
	$A_3 = 29.1 \text{ MHz}, \ [-0.6018, -0.5647, +0.5647]]$
A-tensor:	nucleus ¹³ C, 2 sites
	$A_1 = 20.4 \text{ MHz}, \parallel [0, +0.7071, +0.7071]$
	$A_2 = 26.4 \text{ MHz}, [+0.7071, -0.5000, +0.5000] $
	$A_3 = 19.8 \text{ MHz}, \ [-0.7071, -0.5000, +0.5000]$
A-tensor:	nucleus ^{13}C , 2 sites
	$A_1 = 15.6 \text{ MHz}, \parallel [0, +0.7071, +0.7071]$
	$A_2 = 21.6 \text{ MHz}, [+0.6561, -0.5337, +0.5337] $
	$A_3 = 14.4 \text{ MHz}, \ [-0.7547, -0.4639, +0.4639]$
A-tensor:	nucleus ${}^{13}C$, 4 – 6 sites
	$(A_1 + A_2 + A_3)/3 = 11.4 \text{ MHz}$
Diamond:	natural type IIa, after 12 MeV electron irradiation at low or at room temperature, after
	neutron irradiation at room temperature, anneals out around 500 ⁰ C
Model:	four-vacancy complex along <110>, single interstitial impurity complex
References:	71K, 73K, 73L1, 77C, 78L2, 79C, 79L2, 80F, 81F, 82F2, 82F3, 83F1, 83F2, 85L1, 88L2,
	94N3, 99B1
Smootherman A 2	
Spectrum A2	monoclinic Lat low temperature (100 K)
Symmetry.	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$
Spin:	S = 1
spin.	S = 1 $s_{1} = 2.0031 [1] = 0.01$
g-tensor:	$g_1 = 2.0051, \mu_1, 0, 0$
	$g_2 = 2.0013$, $[[10, -1, 1]]$
D tonger:	$g_3 = 2.0051$, $\ [0, -1, 1]$ 100K $D_1 = -158$ MHz $\ [1 = 0.0081] = 0.0432$ $= 0.04321$
D-tensor:	$100K. D_1 = -150 \text{ MHZ}, [+ 0.9961, -0.0452, -0.0452],$

100K:	$D_1 = -158$ MHZ, [[[+ 0.9981, -0.0432, -0.0432],
	$D_2 = +328$ MHz, [+ 0.0610, + 0.7058, + 0.7058]
	$D_3 = -170 \text{ MHz}, \parallel [0, -0.7071, +0.7071]$
300 K:	$D_1 = -170 \text{ MHz}, [1 0, 0] $
	$D_2 = +352 \text{ MHz}, [0, 1, 1] $
	$D_3 = -182 \text{ MHz}, [0, -1, 1] $

Diamond:	natural type I and II, after electron or fast neutron irradiation at low or at room temperature,
	anneals out around 500 K
Remark:	D-tensor increases with temperature in the range 77 K to room temperature
Model:	three-vacancy chain in {110} plane, di-interstitial impurity complex, impurity + interstitial complex
References:	73K, 73L1, 77C, 78L2, 79C, 79L2, 80F, 81F, 82F2, 82F3, 83F1, 83F2, 84L3, 88L2, 94N3, 94P2

Spectrum A3

Symmetry:	triclinic
Spin:	S = 1
g-tensor:	$g_1 = 2.0027, [+0.884, -0.177, -0.433]$
	$g_2 = 2.0020, \perp [+0.884, -0.177, -0.433]$
	$g_3 = 2.0020, \perp [+0.884, -0.177, -0.433]$
D-tensor:	$D_1 = +416 \text{ MHz}, [+0.8520, +0.4245, +0.3065] $
	$D_2 = -156 \text{ MHz}, [+0.0006, +0.5846, -0.8113] $
	$D_3 = -260 \text{ MHz}, \ [-0.5236, +0.6914, +0.4978]$
Diamond:	natural type I and II, after electron or fast neutron irradiation at low or at room temperature,
	anneals out at 470 K
Model:	di-interstitial + impurity complex
References:	73K, 78L2, 80F, 81F, 82F2, 82F3, 83F1, 83F2, 84L3, 88L2, 94N3

Spectrum A4

Symmetry:	anisotropic, <111> symmetry
Spin:	S = 1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0023$
D-tensor:	small, <111> symmetry
Diamond:	natural type IIa, after nitrogen ion implantation at $650 \ ^{0}\text{C}$
References:	74B2, 78L2, 83F2

Spectrum A5

Symmetry:	monoclinic-I
Spin:	<i>S</i> = 1
g-tensor:	$(g_1 + g_2 + g_3) = 2.0023$
D-tensor:	$D_1 = -103.7 \text{ MHz}, \parallel [0, -0.7071, +0.7071]$
	$D_2 = +300.0 \text{ MHz}, [+0.6157, +0.5572, +0.5572]$
	$D_3 = -196.3 \text{ MHz}, [-0.7880, +0.4353, +0.4353]$
Remark:	parameters similar to those of R4/W6
Diamond:	natural type IIa, after carbon or nitrogen implantation at $600 \ ^{0}\text{C}$
Model:	multivacancy cluster, strained hexavacancy ring, divacancy
References:	78L1, 83F2, 95L

Spectrum A6

Symmetry:	orthorhombic-I
Spin:	S = 1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0023$
D -tensor:	$D_1 = -96 \text{ MHz}, [1, 0, 0] $
	$D_2 = +192 \text{ MHz}, [0, 1, 1] $
	$D_3 = -96 \text{ MHz}, [0, -1, 1] $
Diamond:	natural type IIa, after carbon or nitrogen implantation at $1000 \ ^{0}\text{C}$
Model:	multivacancy cluster
References:	78L1, 83F2

Spectrum A7

Symmetry:	isotropic
Spin:	S = 1/2 or 1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.00$
D/A-tensor:	pair of isotropic lines, symmetrically displaced from central line by $\pm 6 \text{ mT}$
Diamond:	type IIa, or synthetic, highly boron doped, after electron irradiation, anneals out at 220 K
Remark:	resonance may be due to cavity contamination
References:	71L, 77B, 77C, 82F2, 83F2

Spectrum A8

Symmetry:	isotropic
Spin:	S = 1/2 or 1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.00$
D/A-tensor:	pair of isotropic lines, symmetrically displaced from central line by ± 3.3 mT
Diamond:	type IIa, or synthetic, highly boron doped, after electron irradiation, anneals in at 150 K, anneals out at 220 K
Remark:	resonance may be due to cavity contamination
References:	77B, 77C, 82F2, 83F2

Spectrum A9

Symmetry:	axial, [1, 1, 2]
Spin:	S = 1/2
g-tensor:	$g_{\parallel} \approx 0.5 \ (T = 300 \text{ K})$
	$g_{\perp} \approx 3 \ (T = 300 \text{ K})$
Diamond:	synthetic, boron doped, p-type semiconducting
Remark:	g values strongly temperature dependent
Model:	acceptor-bound hole
References:	72B1, 94J

[Ref. p.65

Spectrum A10

Symmetry:	axial, [1, 1, 2]
Spin:	S = 1/2
g-tensor:	$g_{\parallel} \approx 0.5 \ (T = 300 \text{ K})$
	$g_{\perp} \approx 2.5 \ (T = 300 \text{ K})$
Diamond:	synthetic, boron doped, p-type semiconducting
Remark:	g values strongly temperature dependent
Model:	free hole
References:	72B1, 94J

Spectrum A11

Symmetry:	isotropic
Spin:	S = 1/2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0023$
Linewidth:	$\Delta B_{\rm pp} = 0.51 \rm mT$
Diamond:	natural type IIa, B-, C-, N- or Sb-ion implanted
Model:	amorphous carbon, implantation damage
References:	74B1, 74B2, 75M, 78L1, 79T, 94G, 96D

Spectrum AB1

Symmetry:	trigonal
Spin:	S = 1/2
g-tensor:	$g_{\parallel} = 2.0024, \parallel [1, 1, 1]$
	$g_{\perp} = 2.0920, \perp [1, 1, 1]$
Diamond:	synthetic, grown in nickel solvent/catalyst, anneal at 1600°C
References:	99N1, 00N1, 02B, 02P

Spectrum AB2

Symmetry:	trigonal
Spin:	S = 1/2
g-tensor:	$g_{\parallel} = 2.0072, \parallel [1, 1, 1]$
	$g_{\perp}=2.0672, \perp[1, 1, 1]$
Diamond:	synthetic, grown in nickel solvent/catalyst, anneal at 1600°C
References:	99N1, 00N1, 02B, 02P

Spectrum AB3

Symmetry:	orthorhombic-I
Spin:	S = 1/2
g-tensor:	$g_1 = 2.1105, [1, 0, 0] $
	$g_2 = 2.0663, [0, 1, 1] $
	$g_3 = 2.0181, [0, -1, 1] $
Diamond:	synthetic, grown in nickel solvent/catalyst, anneal at 1600°C
References:	99N1, 01P2, 02B, 02P

Spectrum AB4

Symmetry:	orthorhombic-I
Spin:	S = 1/2
g-tensor:	$g_1 = 2.0220, [1, 0, 0] $
	$g_2 = 2.0094, [0, 1, 1] $
	$g_3 = 2.0084, [0, -1, 1] $
Diamond:	synthetic, grown in nickel solvent/catalyst, anneal at 1600°C
References:	99N1, 01P2, 02B, 02P

Spectrum AB5

Symmetry:	trigonal
Spin:	S = 1
g-tensor:	$g_{\parallel} = 2.037, \parallel [1, 1, 1]$
	$g_{\perp} = 2.022, \perp [1, 1, 1]$
D -tensor:	D = 31.72 GHz
Diamond:	synthetic, grown in nickel solvent/catalyst
Model:	negative nickel-nitrogen pair
References:	00N1, 01P1, 01P2, 02B, 02P

Spectrum AB6

Symmetry:	triclinic
Spin:	S = 1/2
g-tensor:	$g_1 = 2.0185, \ [-0.79756, 0.42097, 0.43207]$
	$g_2 = 2.0244, [-0.00987, 0.70704, -0.70711] $
	$g_3 = 2.0742, \parallel [0.60316, 0.56822, 0.55975]$
Diamond:	synthetic, grown in nickel solvent/catalyst
References:	02B, 02P

Spectrum AB7

Symmetry:	orthorhombic-I
Spin:	S = 1/2
g-tensor:	$g_1 = 1.9910, [1, 0, 0] $
	$g_2 = 2.0078, [0, 1, 1] $
	$g_3 = 2.0046, [0, -1, 1] $
Diamond:	synthetic, grown in nickel solvent/catalyst
References:	02B, 02P

Spectrum Boron

Symmetry:	cubic
Spin:	$S = 1/2$ for Γ_7 , $3/2$ for Γ_8
g-values:	$g_{1/2} = 0.21, g_{3/2} = -0.95$
Diamond:	isotopically controlled CVD, type IIb, p-type semiconductor
Model:	hole bound to substitutional boron acceptor
References:	99K1, 99K2, 99K4, 00K1, 01K

Ref. p. 65]

Spectrum E1

Symmetry:	axial (tetragonal or trigonal)
Spin:	S = 1/2
g-tensor:	$g_{\parallel} = 4.117$
	$g_{\perp} = 4.43$
A-tensor:	nucleus ⁵⁹ Co, spin $I = 7/2$, abundance 100%, 1 site
	$A_{\parallel} = 245 \text{ MHz}$
	$A_{\perp} = 260 \text{ MHz}$
Diamond:	synthetic
Model:	Co ²⁺ impurity on slightly distorted octohedral interstitial site
Reference:	75B, 94B

Spectrum G1

g-tensor:	$(g_1 + g_2 + g_3)/3 \approx 3$
Diamond:	synthetic, boron doped
Model:	transition metal impurity, nickel or iron
References:	62H, 67S1

Spectrum KUL1

Spin:	S = 1
g-tensor:	$g_{\parallel} = 2.00415, g_{\perp} = 2.0037$
D-tensor:	$\ddot{D} = 35.8 \text{ mT}, E < 0.1 \text{ mT}$
A-tensor:	nucleus ⁶¹ Ni, spin $I = 3/2$, abundance 1.1%
	$A_{\perp} = 8.7 \text{ mT}$
Diamond:	CVD
Model:	neutral vacancy-nickel-vacancy center [001]
References:	00I, 00S2, 01I

Spectrum KUL2

00%

Spectrum KUL3

Spin:	S = 1/2
g-tensor:	$g_1 = 2.00505, g_2 = 2.00426, g_3 = 2.00255$
A-tensor:	nucleus ¹ H, spin $I = 1/2$, abundance 100%
	$A_1 = 0.1 \text{ mT}, A_2 = <0.02 \text{ mT}, A_3 = 0.26 \text{ mT}$
Diamond:	CVD
Model:	center with one hydrogen atom
References:	011

Spectrum KUL4

Spin:	S = 1/2
g-tensor:	$g_1 = 2.00459, g_2 = 2.00316, g_3 = 2.00259$
A-tensor:	nucleus ¹ H, spin $I = 1/2$, abundance 100%
	$A_1 = 0.105 \text{ mT}, A_2 = 0.087 \text{ mT}, A_3 = 0.112 \text{ mT}$
Diamond:	CVD
Model:	center with one hydrogen atom
References:	011

Spectrum KUL5

S = 1/2
g = 2.00291
nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%
A = 0.074 mT
CVD
center with one nitrogen atom
01I

Spectrum KUL6

Spin:	S = 1/2
g-tensor:	$g_{\parallel} = 2.00307, g_{\perp} = 2.00292$
Diamond:	CVD
Remark:	provisional data
References:	01I

Spectrum KUL7

Spin:	S = 1
g-tensor:	g = 2.002
A-tensor:	nucleus ⁵⁵ Mn, spin $I = 5/2$, abundance 100%
	A = 118 MHz
Diamond:	HPHT powder
Model:	center with one manganese atom
References:	01I, 02B

Spectrum KY1

cubic
S = 1/2
$(g_1 + g_2 + g_3)/3 = 2.003$
$\Delta B = 0.020.8 \text{ mT}$, sample and temperature dependent
natural type IIb, p-type semiconducting
acceptor impurity
67B

.

Ref. p. 65]

Spectrum L1

Symmetry:	isotropic
Spin:	S = 1/2
g-tensor:	g = 2.000
A-tensor:	nucleus ²⁹ Si, spin $I = 1/2$, abundance 4.7%
	$A_1 = 196 \text{ MHz}$
	$A_2 = 232 \text{ MHz}$
	$A_3 = 251 \text{ MHz}$
Diamond:	natural type Ia
Remark:	original label Si-center
Model:	native (silicon+impurity) center (tentative)
Reference:	77M, 94B

Spectrum ME1

Symmetry:	cubic, small tetragonal distortion
Spin:	S = 3/2
g-tensor	g = 2.02
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%
	A = 1.336 MHz
Diamond:	natural, blue Argyle
Model:	nickel-nitrogen center
References:	98N1, 02B

Spectrum N1 (Fig. 1)

Symmetry:	monoclinic-I
Spin:	S = 1/2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0024$
A-tensor:	nucleus N ₁ , isotope ¹⁴ N, spin $I = 1$, abundance 99.63%, 1 site
	$A_1 = + 89.218 \text{ MHz}, [-0.7071, +0.7071, 0.0000]$
	$A_2 = + 126.355$ MHz, [+ 0.5803, + 0.5803, + 0.5714]
	$A_3 = + 89.198 \text{ MHz}, [-0.4041, -0.4041, +0.8207]$
Q-tensor:	$Q_1 = +1.213 \text{ MHz}, [-0.7071, +0.7071, 0.0000] $
	$Q_2 = -2.388$ MHz, [+ 0.5777, + 0.5777, + 0.5766]
	$Q_3 = +1.175$ MHz, $\ [-0.4077, -0.4077, +0.8170]$
A-tensor:	nucleus N ₂ , isotope ¹⁴ N, 1 site
	$A_1 = -8.327$ MHz, $\ [-0.7071, +0.7071, 0.0000]$
	$A_2 = -7.875$ MHz, $\ [-0.6653, -0.6653, +0.3387]$
	$A_3 = -8.288$ MHz, [+0.2395, +0.2395, +0.9409]
Q-tensor	$Q_1 = +0.0437 \text{ MHz}, [-0.7071, +0.7071, 0.0000] $
	$Q_2 = -0.2077 \text{ MHz}, [-0.6732, -0.6732, +0.3060]$
	$Q_3 = + 0.1639 \text{ MHz}, [+ 0.2164, + 0.2164, + 0.9520]$
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 3 sites
	$A_{\parallel} = 33.6 \text{ MHz}$
	$\ddot{A_{\perp}} = 25.8 \text{ MHz}$

A-tensor:	nucleus ¹³ C, 3 sites	
	$A_{\parallel} = 22.5 \text{ MHz}$	
	$A_{\perp}^{"} = 20.7 \text{ MHz}$	
A-tensor:	nucleus ¹³ C, 2 sites	
	$A_{ } = 18.9 \text{ MHz}$	
	$A_{\perp} = 15.6 \text{ MHz}$	
Remark:	¹⁴ N ENDOR data in Refs. 92C1, 92C2 and 94B	
Diamond:	natural brown type Ia	
Model:	two non-equivalent nitrogen atoms, e.g.ionized nitrogen pair N	$1N_2^+$, complex
	of vacancy and nitrogen pair $(N_1N_2V)^-$, non-planar N_1CCN_2 c	omplex,
	complex $N_1CN_2^+$; motional averaging in the temperature range	e 150850 ⁰ C
	with activation energy 0.4 eV; thermally stable to above 900 0 C	
References:	69S1, 70L, 72S1, 73L2, 75S1, 78L2, 78S1, 79C, 82L1, 83F2,	85L2, 87W, 89N1, 91N2, 92B,
	92C1, 92C2, 94B, 95B1, 99B1	
Spectrum N2		
Symmetry:	isotropic	
Spin:	S = 1/2	
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0030$	
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%	
	A = 0.6 MHz, isotropic	
Q-tensor:	Q < 0.3 MHz	
Remark:	¹⁴ N and ¹³ C ENDOR data in Refs. 89N3, 89N4 and 94B	
Diamond:	natural brown type Ia, plastically deformed; diamond film	
Model:	dislocation-related center with nitrogen as a constituent	
References:	75S1, 78L2, 83F2, 89N3, 89N4, 91B, 92B, 94B, 95B1, 99B1	
Spectrum N3 (F	iig. 2)	
Symmetry:	below 200 ⁰ C: monoclinic-I, at 550 ⁰ C: axial $ < 1, 1, 1 >$	
Spin:	S = 1/2	_
g-tensor:	at room temperature	at 550 ⁰ C
	$g_1 = 2.0025, [1, -1, 0] $	$g_{\parallel} = 2.00224, \parallel <1, 1, 1>$
	$g_2 = 2.0022, \perp [1, -1, 0]$	$g_{\perp} = 2.00236, \perp <1, 1, 1>$
	$g_3 = 2.0020, \perp [1, -1, 0]$	
A-tensor:	nucleus ¹⁴ N, spin $I = 1/2$, abundance 99.63%	
	$A_1 = 4.28 \text{ MHz}, \parallel [+0.6355, +0.6355, +0.4384]$	$A_{\parallel} = 4.4 \text{ MHz}, \parallel <1, 1, 1>$
	$A_2 = 3.12 \text{ MHz}, [-0.7071, +0.7071, 0] $	$A_{\perp} = 3.8 \text{ MHz}, \perp <1, 1, 1>$
	$A_3 = 3.12 \text{ MHz}, [-0.3100, -0.3100, +0.8988]$	
Q-tensor:	$Q_1 = -5.52 \text{ MHz}, \parallel [+0.5862, +0.5862, +0.5592]$	$Q_{\parallel} = -5.3 \text{ MHz}, \parallel <1, 1, 1>$
	$Q_2 = +2.76 \text{ MHz}, \ [-0.7071, +0.7071, 0]$	
	$Q_3 = +2.76 \text{ MHz}, [-0.3954, -0.3954, +0.8290]$	
Remark:	¹⁴ N ENDOR data in Refs. 88W1, 92W1 and 94B	
Diamond:	natural type Ib	
Model:	(nitrogen+ divacancy) complex, complex of substitutional nitro	ogen and oxygen impurity
References:	72S1, 76Z, 78L2, 83F2, 86W1, 86W2, 88M, 88W1, 89N2,	92B, 92W1, 94B, 95B1, 98R,
	99B1, 00R	

.

16

Ref. p. 65]

Spectrum N4 (I	Fig. 3)
Symmetry:	monoclinic-I
Spin:	S = 1/2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.002$
A-tensor:	nucleus ¹⁴ N, spin $I = 1/2$, abundance 99.63%, 2 sites
	$A_{\parallel} = 91.3 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 65.6 \text{ MHz}, \perp [1, 1, 1]$
Diamond:	natural, brown, plastically deformed
Remark:	anisotropic distribution of orientations
Model:	two equivalent substitutional nitrogen atoms in planar N1CCN2 structure, near dislocation
References:	75S1, 77W, 78L2, 78W, 79W, 83F2, 91K, 91N2, 95B1
Spectrum N5	
Symmetry:	axial
Spin:	S = 1/2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0027$
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 12 sites
	$A_{\parallel} = 667 \text{ MHz}$
	$A_{\perp} = 336 \text{ MHz}$
Remark:	possibly identical to TI1 and $g = 2.0027$ centers
Diamond:	natural type I, crushed, deposited film
Model:	surface center
References:	61W, 67B, 67S2, 74S2, 78S2, 79S, 91B, 94N6
Spectrum N6	
Symmetry:	monoclinic-I
Spin:	S = 5/2
g-tensor:	measured at frequency 9.5 GHz
	$g_1 = 4.4924, \ [+0.7071, +0.7071, 0]$
	$g_2 = 4.6684, \ [+0.2126, -0.2126, +0.9537]$
	$g_3 = 4.0192$, [+ 0.6744, - 0.6744, - 0.3007]
D-tensor:	E/D = 0.27
g-tensor:	measured at frequency 35.5 GHz
	$g_1 = 4.0129, \ [+0.7071, +0.7071, 0]$
	$g_2 = 4.0274$, [+ 0.2126, - 0.2126, + 0.9537]
	$g_3 = 3.8607, [+0.6744, -0.6744, -0.3007]$
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%
	$A_{\rm I} = 84$ MHz, 2 sites
	$A_{II} = 42$ MHz, 3 sites
	$A_{\rm III} = 27$ MHz, 4 sites
Diamond:	natural, after 3.5 MeV electron irradiation at room temperature
Remark:	original label A-system
Model: References:	possibly transition metal impurity (from) $78N = 94N3$

Spectrum N7

Spin:	S = 5/2
g-tensor:	measured at frequency 9.5 GHz
	$(g_1 + g_2 + g_3)/3 = 4.3$
D-tensor:	E/D = 0.33
Diamond:	natural, after 3.5 MeV electron irradiation at room temperature
Remark:	original label B-system
Model:	possibly transition metal impurity (iron)
References:	78N, 94N3

Spectrum NE1 (Fig. 4)

Symmetry:	monoclinic-I
Spin:	S = 1/2
g-tensor:	$g_1 = 2.1282, [0 , -0.7071, +0.7071]$
	$g_2 = 2.007, \ [+0.2419, +0.6861, +0.6861]$
	$g_3 = 2.0908, [+ 0.9703, -0.1711, -0.1711]$
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 2 sites
	$A_1 = 2.09 \text{ mT}, \perp [0, -1, 1], 5^0 \text{ away from } [1, 1, 1]$
	$A_2 = 1.43 \text{ mT}, \perp [0, -1, 1]$
	$A_3 = 1.45 \text{ mT}, \parallel [0, -1, 1]$
Diamond:	synthetic, grown from nickel-iron solvent, after 4 hours anneal at temperature $T = 2150$ K under
	pressure $p = 5.5$ GPa
Model:	nickel impurity in divacancy with one nitrogen atom at each end: $N_s V NiV N_s$ chain in (011)
	plane
References:	93N2, 94M, 95B1, 95Y, 96Y, 97N, 98N2, 99B1, 99M3, 99N2, 00C1, 00N2, 02B, 02P

Spectrum NE2 (Fig. 5)

triclinic
S = 1/2
$g_1 = 2.1301, 20^0$ away from $[0, 1, -1], 5^0$ away from $\{0, 1, 1\}$
$g_2 = 2.0100, 14^0$ away from [0, 1, 1]
$g_3 = 2.0931$
nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 1 site
$A_1 = 2.10 \text{ mT}, \perp [0, 1, -1], 3^0 \text{ away from } [1, 1, 1]$
$A_2 = 1.42 \text{ mT}, \perp [0, 1, -1]$
$A_3 = 1.41 \text{ mT}, \parallel [0, 1, -1]$
nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 1 site
$A_1 = 1.875 \text{ mT}, \pm [0, 1, -1], 1^0 \text{ away from } [1, 1, 1]$
$A_2 = 1.185 \text{ mT}, \perp [0, 1, -1]$
$A_3 = 1.25 \text{ mT}, [0, 1, -1] $
nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 1 site
$A_1 = 0.175 \text{ mT}, [1, 1, 1] $
$A_2 = 0.35 \text{ mT}, \ [2, -1, -1]]$
$A_3 = 0.246 \text{ mT}, [0, 1, -1] $

Ref. p. 65]	4.1 Diamond (C)	19
Diamond:	synthetic, grown from nickel-iron solvent, after 4 hours anneal at temperature $T = 2150$ pressure $p = 5.5$ GPa, natural blue Argyle	K under
Model:	nickel impurity in divacancy with one nitrogen atom at each end: N_sVNiVN_s chain i plane, additional nitrogen atom out of plane	n (011)
References:	93N2, 94M, 95B1, 95Y, 96N, 96Y, 97N, 98N1, 98N2, 99B1, 99M3. 99N2, 00C1, 02B,	02P
Spectrum NE3	(Fig. 6)	
Symmetry:	monoclinic-I	
Spin:	S = 1/2	
g-tensor:	$g_1 = 2.0729$, [0 , -0.7071, +0.7071]	
8	$g_2 = 2.0008, [+0.1219, +0.7018, +0.7018]$	
	$g_3 = 2.0476$, [+ 0.9925, -0.0862, -0.0862]	
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 1 site	
	$A_1 = 1.6 \text{ mT}, \perp [0, 1, -1], 4^0 \text{ away from } [1, 1, 1]$	
	$A_2 = 1.24 \text{ mT}, \perp [0, 1, -1]$	
	$A_3 = 1.15 \text{ mT}, \parallel [0, 1, -1]$	
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 2 sites	
	$A_1 = 0.665 \text{ mT}, [-1, 1, -1] $	
	$A_2 = 0.5 \text{ mT}, \perp [-1, 1, -1]$	
	$A_3 = 0.5 \text{ mT}, \perp [-1, 1, -1]$	
Diamond:	synthetic, grown from nickel-iron solvent, after 4 hours anneal at temperature $T = 2150$ l	K under
	pressure $p = 5.5$ GPa	
Model:	nickel impurity in divacancy with substitutional nitrogen atom at one end in (011) pla	ine, two
	substitutional nitrogen atoms out of plane at other end	
References:	93N2, 95B1, 95Y, 96Y, 97N, 98N2, 99B1, 99M3, 99N2, 00C1, 02B. 02P	
Spectrum NF4		
Symmetry:	trigonal	
Spin.	S = 1/2	
g-tensor:	$g_{\rm H} = 2.0227, [1, 1, 1] $	

g-tensor:	$g_{\parallel} = 2.0227, \parallel [1, 1, 1]$
	$g_{\perp} = 2.0988, \perp [1, 1, 1]$
Diamond:	synthetic, grown from nickel-iron solvent, as grown
Model:	nickel impurity in divacancy
References:	94N5, 97N, 98P, 99B1, 99N1, 99N2, 00C1, 00N2, 02B
Model: References:	nickel impurity in divacancy 94N5, 97N, 98P, 99B1, 99N1, 99N2, 00C1, 00N2, 02B

Spectrum NE4*

Symmetry:	trigonal
Spin:	S = 1/2
g-tensor	$g_{\parallel} = 2.004, \parallel [1, 1, 1]$
	$g_{\perp} = 2.093, \perp [1, 1, 1]$
Remark:	observed in ODMR
Diamond:	synthetic, nickel catalyst
Model:	similar to NE4
References:	98P, 99N1

Spectrum NE5

Symmetry:	monoclinic-I
Spin:	S = 1/2
g-tensor:	$g_1 = 2.0903, [0 , -0.7071, +0.7071]$
	$g_2 = 2.0044$, [+ 0.1392, + 0.7002, + 0.7002]
	$g_3 = 2.039, [+ 0.9903, -0.0984, -0.0984]$
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 2 sites
	$A_1 = 1.225 \text{ mT}, \parallel [1, 1, 1]$
	$A_2 = 0.95 \text{ mT}, \perp [1, 1, 1]$
	$A_3 = 0.95 \text{ mT}, \perp [1, 1, 1]$
Diamond:	synthetic, grown from nickel-iron solvent, after 5 hours anneal at temperature $T = 2100$ K under
	pressure $p = 5.5$ GPa
Model:	nickel impurity in four-vacancy chain with one substitutional nitrogen atom at each end:
	N _s VVNiVVN _s in (011) plane, alternatively N _s CVNiVCN _s chain in (011) plane
References:	94N5, 95Y, 97N, 99B1, 99M3, 99N2, 00N2, 02B, 02P

Spectrum NE6

Symmetry:	orthorhombic-I
Spin:	S = 1/2
g-tensor:	$g_1 = 1.995, [1, 1, 0] $
	$g_2 = 2.0207, [1, -1, 0] $
	$g_3 = 2.0109, [0, 0, 1] $
Diamond:	synthetic, grown from nickel-iron solvent, after 5 hours anneal at temperature $T = 2100$ K under
	pressure $p = 5.5$ GPa
Model:	nickel-nitrogen complex
References:	94N5, 95Y, 97N, 99B1, 02B

Spectrum NE7

Symmetry:	monoclinic-I
Spin:	S = 1/2
g-tensor:	<i>g</i> > 2.0027
A-tensor:	A = 0.60.9 mT
Diamond:	synthetic, grown from nickel-iron solvent, after 5 hours anneal at temperature $T = 2100$ K under
	pressure $p = 5.5$ GPa
Model:	nickel-nitrogen complex
References:	94N5, 95Y, 97N, 99B1, 99N2, 02B

Spectrum NE8

Symmetry:	monoclinic-I
Spin:	S = 1/2
g-tensor:	$g_1 = 2.0439, \parallel [0, 1, 1]$
	$g_2 = 2.1722, \perp [0, 1, 1]$
	$g_3 = 2.0846, \perp [0, 1, 1]$

.

nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 4 sites
$A_1 = 31.9 \text{ MHz}$
$A_2 = 21.8 \text{ MHz}$
$A_3 = 21.0 \text{ MHz}$
natural and synthetic grown from nickel-iron solvent
positive N ₂ C-VNiV-CN ₂ complex
99B1, 99N2, 02B

Spectrum NE9

Symmetry:	trigonal
Spin:	S = 1/2
g-tensor:	$g_1 = 2.0921, \parallel [1, 1, 1]$
	$g_2 = 2.1705, \perp [1, 1, 1]$
Diamond:	synthetic grown from nickel-iron solvent
Model:	neutral C ₃ -VNiV-N ₃ complex
References:	02B

Spectrum NIRIM-1

Symmetry:	cubic or trigonal
Spin:	S = 1/2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0112$
Diamond:	synthetic, grown from Ni solvent with nitrogen getters
Model:	interstitial Ni ⁺ , electronic configuration 3d ⁹ , isotropic (cubic) in the temperature range 2577
	K, anisotropic (trigonal) at 4 K
References:	90I1, 94N2, 95G2, 98C, 99D, 99G, 00C1, 00G, 02B, 02P

Spectrum NIRIM-2

Symmetry:	trigonal
Spin:	S = 1/2
g-tensor:	$g_{\parallel} = 2.3285$
	$g_{\perp} \approx 0$
Diamond:	synthetic, grown from Ni solvent with nitrogen getters
Model:	complex of interstitial Ni ⁺ and vacancy or local charge compensation, nickel-boron complex
References:	90I1, 94N2, 95G2, 98C, 98P, 99D, 99M1, 00C1, 02B, 02P

Spectrum NIRIM-3

Symmetry:	tetragonal
Spin:	S = 1/2
g-tensor:	$g_{\parallel} = 2.0009$
	$g_{\perp} = 2.0024$
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 4 sites
	$A_{\parallel} = 32.8 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 21.0 \text{ MHz}, \perp [1, 1, 1]$

4.1 Diamond (C)

Diamond:synthetic, grown from Ni or B solvent, boron doped, after electron irradiation or H implantationModel:positively charged vacancy (tentative)Reference:94I

Spectrum NIRIM-4 (Fig. 7)

Symmetry:	orthorhombic-I
Spin:	S = 3/2
g-tensor:	$g_1 = 2.00332, [1, 0, 0] $
	$g_2 = 2.00256, [0, 1, 1] $
	$g_3 = 2.00419, [0, -1, 1] $
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 1 site
	$A_1 = 11.2 \text{ MHz}, [1, 0, 0] $
	$A_2 = 108.6 \text{ MHz}, \parallel [0, 1, 1]$
	$A_3 = 10.3 \text{ MHz}, [0, -1, 1] $
A-tensor:	nucleus ¹¹ B, spin $I = 3/2$, abundance 80.2%, 1 site
	$A_1 = 32.8 \text{ MHz}, [1, 0, 0] $
	$A_2 = 24.9 \text{ MHz}, \parallel [0, 1, 1]$
	$A_3 = 42.6 \text{ MHz}, \parallel [0, -1, 1]$
Remark:	hyperfine interaction with ¹⁰ B, spin $I = 3$, abundance 19.8%, also observed
Diamond:	synthetic, grown from Ni-2%Ti or Co solvent, boron doped, after electron irradiation
Model:	<100>-split positively charged boron-nitrogen interstitialcy
References:	94I, 97I2

Spectrum NIRIM-5

Symmetry:	trigonal
g-tensor:	$g_{\parallel} = 4.0, \parallel [1, 1, 1]$
	$g_{\perp} \approx 0, \ \perp [1, 1, 1]$
Diamond:	synthetic, grown from Ni solvent, boron doped, as grown
Reference:	94I

Spectrum NIRIM-6

g-tensor:	g = 2.0077, [1, 0, 0]
Diamond:	synthetic, grown from Ni(2%Ti) solvent
Reference:	94I

Spectrum NIRIM-7

g-tensor:	g = 1.9926, [1, 0, 0]
Diamond:	synthetic, grown from Ni(2%Ti) solvent
Reference:	94I

Spectrum NIRIM-8

Symmetry:	monoclinic-I
Spin:	S = 1/2
g-tensor:	$g \approx 2.0024$

Ref. p. 65]

23

A-tensor:	nucleus ³¹ P, spin $I = 1/2$, abundance 100%, 1 site: A small	
	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 1 site: $A \approx 90$ MHz	
Diamond:	synthetic, grown from phosphorus catalyst	
Model:	complex of substitutional phosphorus and nitrogen impurities on next-nearest neighbor	
	positions in (011) plane: P _s CN _s	
Remark:	related spectra MA1 (Refs. 91S1, 91S2) and BI1 (Ref. 94Z3)	
Reference:	9711	

Spectrum NL1

Symmetry:	cubic
Spin:	S = 3/2
g value:	$g = (-)1.10 \pm 0.05$
g_2 value:	$g_2 = (+)0.01 \pm 0.02$
d,b values:	$d/b = 1.55 \pm 0.05$
Diamond:	natural type IIb, p-type semiconducting
Remark:	observed at low temperatures ($T \le 2$ K), under external uniaxial stress ($p \ge 0.25$ GPa)
Model:	hole bound to acceptor boron
References:	81A1, 81A3, 83A, 85A

Spectrum NOC1, NOC2, NOC3

Symmetry:	low
Spin:	S = 1/2 + 1/2
g-tensor:	g = 2.0024
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 2 sites
	$A_{\parallel} = 114 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 82 \text{ MHz}, \perp [1, 1, 1]$
Diamond:	synthetic, grown in nickel-iron solvent, high nitrogen concentration
Model:	coupled pair of substitutional nitrogen atoms, three different pairs with site separations between
	0.357 and 0.564 nm
References:	99N3, 99N4, 99N6

Spectrum NOC4

Symmetry:	low
Spin:	S = 1/2
g-tensor:	$g_1 = 4.0085$
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 2 sites
	$A_{\parallel} = 114 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 82 \text{ MHz}, \perp [1, 1, 1]$
Diamond:	synthetic, grown in nickel-iron solvent, high nitrogen concentration
Model:	pairs of substitutional nitrogen atoms with separation greater than 0.7 nm
References:	99N4

Spectrum NOL1

Symmetry:	trigonal
Spin:	S = 1
g-tensor:	$g_{\parallel} = 2.0235, \parallel [1, 1, 1]$
	$g_{\perp} = 2.002, \ \perp [1, 1, 1]$
D-tensor:	D = 171 GHz
Diamond:	synthetic, grown in nickel(-iron) solvent
Model:	positive pair Ni _i B _s
References:	02B

Spectrum O1

Symmetry:	monoclinic-I (Ref. 88L2)	orthorhombic-I (Ref. 90E)
Spin:	S = 1	
g-tensor:	$g_1 = 2.0022, [0, -1, 1] $	$g_1 = 2.0028, [0, -1, 1] $
	$g_2 = 2.0020, \parallel [1, 0, 0]$	$g_2 = 2.0027, [1, 0, 0] $
	$g_3 = 2.0014, \parallel [0, 1, 1]$	$g_3 = 2.0016, [0, 1, 1] $
D-tensor:	$D_1 = -108.3 \text{ MHz}, \parallel [0, -0.707, +0.707]$	$D_1 = \pm 107.7 \text{ MHz}, [0, -1, 1] $
	$D_2 = -96.9 \text{ MHz}, \parallel [1.000, +0.005, +0.005]$	$D_2 = \pm 97.8 \text{ MHz}, [1, 0, 0] $
	$D_3 = +205.2 \text{ MHz}, [-0.007, +0.707, +0.707] $	$D_3 = \le 206.1 \text{ MHz}, [0, 1, 1] $
Remark:	parameters of g and D-tensors depend on temperatur	re of annealing
Diamond: natural type I and IIa, after neutron or electron irradiation and a		irradiation and annealing above ≈ 750 ⁰ C,
	anneals out at ≈ 1100 ⁰ C	
Model:	4-vacancy chain, (three-vacancy+substitutional	oxyen) chain, (four-vacancy+interstitial
	oxygen) chain	
References:	54G, 55G, 62L, 66C2, 72W, 73L1, 77C, 77L1, 7	7L2, 78L2, 79C, 79V, 83F2, 84L1, 84L2,
	85L1, 86L, 87W, 88L2, 89N1, 90E, 94N4	

Spectrum O2

Symmetry:	isotropic
Spin:	S = 1/2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0028$
Remark:	linewidth from 110mT, depending on neutron dose, temperature of measurement and annealing
Diamond:	natural, after neutron irradiation
References:	54G, 55G, 62L, 67B, 91B, 94N3

Spectrum O3

Symmetry:	orthorhombic-II
Spin:	S = 1
g-tensor:	$g_1 = 2.0021, [1, 0, 0] $
	$g_2 = 2.0026, [0, 1, 0] $
	$g_3 = 2.0022, [0, 0, 1] $
D-tensor:	$D_1 = 458.2 \text{ MHz}$
	$D_2 = 350.3 \text{ MHz}$
	$D_3 = -808.6 \text{ MHz}$

Diamond:

synthetic, type IIa, 2 MeV electron irradiation at 100 K

Model:	three or two <100>-split interstitials
References:	99T1, 00H2, 01G1, 01G3
Spectrum O4	
Symmetry:	monoclinic-I
Spin:	S = 1/2
g-tensor:	$g_1 = 1.8438, [0, 1, 1] $
	$g_2 = 1.7045, \perp [0, 1, 1]$
	$g_3 = 2.3463, \perp [0, 1, 1]$
A-tensor:	nucleus ⁵⁹ Co, spin $I = 7/2$, abundance 100%, 1 site
	$A_1 = 180 \text{ MHz}, \parallel [0, 1, 1]$
	$A_2 = 163 \text{ MHz}, \perp [0, 1, 1]$
	$A_3 = 248 \text{ MHz}, \perp [0, 1, 1]$
Diamond:	synthetic, grown in cobalt-containing metal solvent catalyst
Model:	negative C_3 -VCoV- C_2N complex
References:	99J, 00C1, 00J, 00T1, 02B
Spectrum OK1	(Fig. 8)
Symmetry:	monoclinic-I
Spin:	S = 1/2
g-tensor:	$g_1 = 2.0031, [0 , -0.7071, +0.7071]$
	$g_2 = 2.0019, [+0.7096, +0.4983, +0.4983]$
	$g_3 = 2.0025, [-0.7046, +0.5017, +0.5017] $
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%
	$A_1 = 15.48 \text{ MHz}, \parallel [0, -0.7071, +0.7071]$
	$A_2 = 21.66 \text{ MHz}, \parallel [+0.4226, -0.6409, -0.6409]$
	$A_3 = 15.19 \text{ MHz}, \parallel [+0.9063, +0.2988, +0.2988]$
O-tensor:	nucleus ¹⁴ N
Q tombor:	$Q_1 = +1.31 \text{ MHz}, \parallel [0, -0.7071, +0.7071]$
	$Q_2 = -2.67$ MHz, [+ 0.5892, -0.5713, -0.5713]
	$Q_2 = \pm 1.36 \text{ MHz}$, $ \pm 0.8080 \pm 0.4166 \pm 0.4166 $
A tensor:	$g_{3} = 1$ 1.50 km/z, η_{1} 1. 0.0000, η_{2} 0.0000, η_{3} 0.0000, $\eta_$
A-telisor.	$A_{\rm ev} = 23.7 \text{ MHz}$ [[1, 0, 0]
A_tensor	nucleus 13 C 2 sites
A-tensor.	$A_{\rm H} = 13.5 \text{ MHz}$
	$A_{\perp} = 9.9 \text{ MHz}$
A-tensor:	nucleus 13 C. 3 sites
A tensor.	$(A_1 + A_2 + A_3)/3 = 6.6 \text{ MHz}$
A-tensor	nucleus 13 C 6 sites
A-tensor.	$(A_1 + A_2 + A_3)/3 = 3.9 \text{ MHz}$
Remark.	14 N ENDOR in Refs. 88B and 89N2
Diamond.	natural type Ib
Model:	(nitrogen+vacancy) complex, (nitrogen+vacancy+oxygen) complex, N _s CO _s complex
References:	70K, 72S1, 73L2, 77L4, 77M, 78L2, 78S1, 83F2, 86W1, 86W2, 88B, 88M, 88W1, 89N2,
	92B, 92W3, 94B, 95B1

Spectrum P1	(Figs. 9-12)
Symmetry:	trigonal
Spin:	S = 1/2
g-tensor:	$g_{\parallel} = + 2.0024 \pm 0.0001, \parallel [1, 1, 1]$
	$g_{\perp} - g_{\parallel} = + 0.0001 \pm 0.00003$
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 1 site
	$T = 4.2 \text{ K}: A_{\parallel} = 114.032 \text{ MHz}, \parallel [1, 1, 1]$ $T = 300 \text{ K}: A_{\parallel} = 113.982 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 81.318 \text{ MHz}, \perp [1, 1, 1]$ $A_{\perp} = 81.345 \text{ MHz}, \perp [1, 1, 1]$
Q-tensor:	nucleus ¹⁴ N, 1 site
	$Q_{\parallel} = -2.649 \text{ MHz}, \parallel [1, 1, 1]$
	$Q_{\perp} = + 1.325 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹⁵ N, spin $I = 1/2$, abundance >90%, 1 site
	$A_{\parallel} = -159.730 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = -113.838 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 1 site in shell a (Fig. 10)
	$A_{\parallel} = 338.171 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 139.531 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹³ C, 3 sites in shell d (Fig. 10)
	$A_1 = 30.921 \text{ MHz}, [+0.7071, -0.7071, 0.0000] $
	$A_2 = 40.292 \text{ MHz}, [+ 0.6039, + 0.6039, + 0.5201]$
	$A_3 = 31.662 \text{ MHz}, \ [-0.3678, -0.3678, +0.8541]$
A-tensor:	nucleus ¹³ C, 3 sites in shell c (Fig. 10)
	$A_1 = -26.488 \text{ MHz}, [+0.7071, -0.7071, 0.0000]$
	$A_2 = -22.771 \text{ MHz}, [+0.5599, +0.5599, +0.6107]$
	$A_3 = -25.319 \text{ MHz}, [-0.4318, -0.4318, +0.7919]$
A-tensor:	nucleus ¹³ C, 3 sites in shell b (Fig. 10)
	$A_1 = 10.638 \text{ MHz}, [+0.7071, -0.7071, 0.0000] $
	$A_2 = 14.153 \text{ MHz}, \parallel [+0.6073, +0.6073, +0.5122]$
	$A_3 = 10.618 \text{ MHz}, [-0.3622, -0.3622, +0.8589]$
A-tensor:	nucleus ${}^{13}C$, 6 sites in shell e or g (Fig. 10)
	$A_1 = 11.757 \text{ MHz}, \parallel [+0.7935, +0.5193, +0.3173]$
	$A_2 = 8.579 \text{ MHz}, \ [-0.1262, +0.6492, -0.7501]]$
	$A_3 = 8.122 \text{ MHz}, \parallel [-0.5991, +0.5587, +0.5736]$
A-tensor:	nucleus ¹³ C, 3 sites
	$(A_1 + A_2 + A_3)/3 = 4.15 \text{ MHz}$
A-tensor:	nucleus 13 C, 6 (or 9) sites
	$(A_1 + A_2 + A_3)/3 = 2.75 \text{ MHz}$
Diamond:	synthetic and natural type Ib, type Ia (Refs. 81B and 82F1), type IIa (Refs. 94Z1 and 94Z2)
Remarks:	sign of g values positive (Ref. 74S1), g-tensor anisotropic (Fig. 12, Ref. 94Z1), spin relaxation
	times in Refs. 60S, 76Z, 78B and 97W1, ¹⁴ N ENDOR in Refs. 66C1, 89N2, 92C3 and 94C,
	¹⁵ N ENDOR in Refs. 92C3 and 94C, ¹³ C ENDOR in Refs. 92C3 and 94C (Fig. 11), ODMR on
	2.56 eV optical system in Ref. 95N, ¹² C isotopically enriched diamond in Refs. 94Z1 and
	94Z2, ¹⁵ N isotopically enriched in Ref. 75K

26

Model: neutral substitutional nitrogen, <1, 1, 1> static distortion (Fig. 9), crystallographic point group 3m, energy for dynamic Jahn-Teller averaging 0.7 eV (Refs. 67L, 67S3, 80A, 81A2 and 88H2)
References: 59S1, 60S, 62H, 62L, 64S, 65D1, 65D4, 65F, 65L1, 65L2, 65S1, 65S2, 66B, 66C1, 66C2, 66S. 67L, 67S1, 67S2, 67S3, 68P, 68S1, 69S2, 70L, 71C, 71S3, 71S4, 72B2, 72S2, 73L2, 74S1, 75K, 75S1, 75S2, 75S3, 76Z, 77L4, 77S, 78B, 78L1, 78L2, 78S1, 78S2, 79A, 79C, 79H2, 80A, 80B, 81A1, 81A2, 81B, 82F1, 82L1, 82W2, 83F1, 83F2, 85L2, 86W1, 86W2, 87W, 88H1, 88H2, 88L2, 88M, 88W1, 89N2, 90F2, 90I3, 90I4, 90O3, 90S, 90W, 91B, 91H, 91K, 91N1, 92B, 92C3, 92S, 92W3, 93C, 93H5, 93K, 93M3, 93N3, 94B, 94C, 94J, 94L2, 94N1, 94Z1, 94Z2, 95B1, 95N, 96G1, 96G2, 96H, 96K1, 96R1, 96T7, 96V, 96W3, 97G2, 97K, 97T1, 97W1, 98N2, 98R, 98S, 99B1, 99D, 99I, 99N5, 99N6, 99N7, 99O, 99R, 99Y, 00R, 00S3, 00T2, 00V, 01I, 01N, 01W1, 02P

.

Spectrum P2

Symmetry:	trigonal	
Spin:	S = 1/2	
g-tensor:	$g_{\parallel} = 2.0023, \parallel [1, 1, 1]$	
	$g_{\perp} = 2.0032, \perp [1, 1, 1]$	
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 3 sites	
	$A_{\parallel} = 11.2 \text{ MHz}, \parallel [+0.3746, -0.6556, -0.6556] \text{ (Ref. 93W1)}$	
	$A_{\perp} = 7.4 \text{ MHz}, \perp [+0.3746, -0.6556, -0.6556]$	
	$A_1 = 9.1 \text{ MHz}, \parallel [0, -0.707, +0.707] \text{ (Ref. 78S1)}$	
	$A_2 = 10.4 \text{ MHz}, [+0.363, +0.659, +0.659] $	
	$A_3 = 8.8 \text{ MHz}, [-0.932, +0.256, +0.256] $	
Q-tensor:	nucleus ¹⁴ N, 3 sites	
	$Q_{\parallel} = -3.2 \text{ MHz}, \parallel [1, 1, 1]$	
	$Q_{\perp}^{''}$ = + 1.6 MHz, \perp [1, 1, 1]	
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 1 site	
	$A_{\parallel} = 404 \text{ MHz}, \parallel [1, 1, 1]$	
	$A_{\perp} = 174 \text{ MHz}, \perp [1, 1, 1]$	
A value:	nucleus ^{13}C , 3 sites	
	$A_{xx} = 27.6 \text{ MHz}, [1, 0, 0] $	
A value:	nucleus ^{13}C , 3 sites	
	$A_{xx} = 19.2 \text{ MHz}, [1, 0, 0] $	
Diamond:	natural type I	
Remarks:	known as the "14 line" spectrum, ¹⁴ N ENDOR in Refs. 73L3, 84W and 93W1, model	
a -	confirmed by ODMR (Ref. 80B)	
Model	three equivalent substitutional nitrogen atoms nearest neighbor to common vacancy	
References:	59S1, 59S2, 64S, 66C2, 71S2, 73L3, 76Z, 77L4, 78L2, 78S1, 79C, 79H1, 80B, 82W2, 83F2,	
	84W, 88H2, 88L1, 92B, 93H5, 93W1, 94B, 94D, 94P1, 94W2, 95B1, 95W3, 96W3, 97W1,	
	98R, 99B1, 99D, 00S3, 00T2	

Spectrum PA1

Symmetry:	trigonal
Spin:	S = 1/2
g-tensor:	$g_{\parallel} = 2.25, \parallel [1, 1, 1]$
	$g_{\perp} = 0, \perp [1, 1, 1]$

Remark:	observed in ODMR, similar to NIRIM-2, but associated ZPL at 1.06 eV
Diamond:	synthetic, grown in nickel solvent catalyst
Model:	nickel related
References:	98P, 02B
Spectrum R1	, R1a–R1f (Fig. 13)
Symmetry:	monoclinic-I
Spin:	S = 1
g-tensor:	$g_1 = 2.0018$, [+ 0.7071, -0.7071, 0] (Ref. 96T1)
	$g_2 = 2.0019, [+0.7071, +0.7071, 0]$
	$g_3 = 2.0025, [0 , 0 , +1.0000]$
	$g_1 = 2.0019$, $\ [+0.7071, -0.7071, 0]$ (Ref. 94W1)
	$g_2 = 2.0020, [+ 0.6984, + 0.6984, - 0.1564]$
	$g_3 = 2.0027, [+0.1106, +0.1101, +0.9877]$
D-tensor:	$D_1 = +1408.6 \text{ MHz}, [+0.7071, -0.7071, 0] $
	$D_2 = -2805.4$ MHz, [+ 0.6747, + 0.6747, - 0.2990]
	$D_3 = +1396.8 \text{ MHz}, \parallel [+0.2115, +0.2115, +0.9542]$
	$D_{\text{R1a}} = 0.9918 D_{\text{R1}}, D_{\text{R1b}} = 0.9890 D_{\text{R1}}, D_{\text{R1c}} = 0.9879 D_{\text{R1}}, D_{\text{R1d}} = 0.9793 D_{\text{R1}}, D_{\text{R1e}} = 0.9793 D_{\text{R1}}$
	$0.9746D_{\rm R1}, D_{\rm R1f} = 0.9724D_{\rm R1}$
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 2 sites
	$A_{\parallel} = 122.9 \text{ MHz}, \parallel [1, -1, 0]$
	$A_{\perp} = 12.0 \text{ MHz}, \perp [1, -1, 0]$
A-tensor:	nucleus ¹³ C, 4 sites
	$A_1 = 44.4 \text{ MHz}, \parallel [0, -1, 1] (\text{Ref. 83L2})$
	$A_2 = 39.9 \text{ MHz}, \parallel [4, 9, 9]$
	$A_3 = 43.8 \text{ MHz}, \parallel [-9, 2, 2]$
	$A_{\parallel} = 48 \text{ MHz}, \parallel [+0.5000, -0.5000, +0.7071] \text{ (Ref. 96T1)}$
	$A_{\perp} = 36 \text{ MHz}, \ \perp [+0.5000, -0.5000, +0.7071]$
A-tensor:	nucleus ¹³ C, 4 sites
	$A_1 = 30.6 \text{ MHz}, \parallel [0, -1, 1] (\text{Ref. 83L2})$
	$A_2 = 24.3 \text{ MHz}, \parallel [4, 9, 9]$
	$A_3 = 27.3 \text{ MHz}, [-9, 2, 2] $
	$A_{\parallel} = 27 \text{ MHz} (\text{Ref. 96T1})$
	$A_{\perp} = 27 \text{ MHz}$
Diamond:	synthetic and natural type I and II, after 2 MeV electron or fast neutron irradiation, anneals out
	at 300400 ⁰ C
Remark:	original label b-system, ¹³ C isotopically enriched diamond in Refs. 93T2, 95T3, 96T1
Model:	complex of impurity and interstitial carbon, strained neutral lattice vacancy, <001>-split di-
	carbon interstitial
References:	62F, 63F, 65D3, 66C2, 72W, 73L1, 77C, 77L1, 78L2, 79C, 79V, 81F, 82F2, 82F3, 83F1, 83F2,
	83L2, 85L1, 87W, 88H1, 88L2, 89N1, 92B, 93T1, 93T2, 94L3, 94L4, 94N3, 94W1, 95T3, 96L1, 96T1, 96T3, 96T5, 96T7, 97B1, 97B2, 97T2, 97T5, 98B, 99B1, 99B2, 99M2, 99T1, 99T3, 00H2, 01G1, 01G3, 01T, 01W1

4.1 Diamond (C)

28

[Ref. p.65

Ref. p. 65]

Spectrum R2

Symmetry:	tetragonal
Spin:	S = 1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.00$
D-tensor:	$D_{\parallel} = + 2760 \text{ MHz}, \parallel [1, 0, 0]$
	$D_{\perp} = -1380 \text{ MHz}, \perp [1, 0, 0]$
Diamond:	synthetic and natural type I and II, after electron or neutron irradiation at low and at room
	temperature, anneals out at 400500 ⁰ C
Remarks:	excited state about 37 meV above diamagnetic ground state, original label c-system
Model:	complex of impurity and interstitial carbon, <100>-distorted neutral lattice vacancy
References:	62F, 63F, 63H, 65D3, 66C2, 72W, 73K, 73L1, 75W, 77C, 77L1, 78L2, 79C, 79L2, 79V, 81F,
	82F2, 82F3, 83F1, 83F2, 85L1, 87W, 88L2, 89N1, 93M1, 93M2, 93T2, 94L3, 94N3, 96L1,
	96T1, 97T2, 99B1, 99D, 99M2, 99T1, 99T2, 00H1, 00H2, 01G1, 01G2, 01G3, 01T, 01W1

Spectrum R3

Symmetry:	triclinic
Spin:	S = 1
g-tensor:	$g_1 = 2.0019, [+0.758, +0.650, -0.051] $
	$g_2 = 2.0024, \perp [+0.758, +0.650, -0.051]$
	$g_3 = 2.0024, \perp [+0.758, +0.650, -0.051]$
D-tensor:	$D_1 = +276.6 \text{ MHz}, [+0.928, +0.311, +0.207] $
	$D_2 = -123.6 \text{ MHz}, [-0.243, +0.082, +0.967] $
	$D_3 = -153.0 \text{ MHz}, [+0.284, -0.947, +0.152] $
Diamond:	natural type I and II, after fast neutron or electron irradiation at low or at room temperature,
	anneals out at 500600 ⁰ C
Remark:	original label d-system
Model:	complex of impurity and interstitial carbon
References:	62F, 63F, 65D3, 66C2, 73L1, 75L2, 77C, 77L1, 78L2, 78L3, 79C, 79L2, 79V, 81F, 82F2,
	83F2, 85L1, 87W, 88L2, 89N1, 94L5, 94N3, 99T1

Spectrum R4/W6

-	
Symmetry:	monoclinic-I
Spin:	S = 1
g-tensor:	$g_1 = 2.0024, \parallel [0, -1, 1]$
	$g_2 = 1.9996, \parallel [1, 1, 1]$
	$g_3 = 2.0022, [-2, 1, 1] $
D-tensor:	$D_1 = +108 \text{ MHz}, \parallel [0, -1, 1]$
	$D_2 = -312 \text{ MHz}, \parallel [1, 1, 1]$
	$D_3 = +204 \text{ MHz}, [-2, 1, 1] $
Diamond:	natural type Ia or IIa, synthetic type IIa/b, after 2 MeV electron irradiation at low and at room
	temperature, enhanced by anneal above 500 0 C, anneals out at 800900 0 C
Remarks:	original label e-system, spectra R4 and W6 are related to same center, spectrum similar
	(identical?) to A5, g and D values temperature dependent, ${}^{13}C$ enriched diamond in Refs. 96T6
	and 97T4

30	4.1 Diamond (C)	[Ref. p.65	
Model:	complex of impurity and interstitial carbon, neutral divacancy		
References:	64C 731.1 751.2 77C, 77L1, 78L1, 78L2, 78L3, 79C, 79V, 81F, 82F2, 83F2, 84L1, 85L1		
	86L, 88L2, 89N1, 94N4, 95L, 96T6, 97T4, 99B1, 99B2, 99D, 99T4, 02B		
Spectrum R5			
Symmetry:	orthorhombic-I		
Spin:	S = 1		
g-tensor: $g_1 = 2.0024$, $ [1, 0, 0] $			
	$g_2 = 2.0019, [0, 1, 1] $		
	$g_3 = 2.0028, [0, -1, 1] $		
D-tensor:	$T \le 77 \text{ K}$: $D_1 = -190 \text{ MHz}$, $\ [1, 0, 0] (\text{Ref. 73L1})$		
	$D_2 = +420 \text{ MHz}, [0, 1, 1] $		
	$D_3 = -230 \text{ MHz}, [0, -1, 1] $		
D -tensor:	$T \approx 293 \text{ K}$: $D_1 = -265 \text{ MHz} (\text{Ref. 73L1}) - 244 \text{ MHz}, 1, 0, 0$)] (Ref. 90E)	
	$D_2 = +570 \text{ MHz} + 524 \text{ MHz}, \parallel 0, 1,$	1]	
	$D_3 = -305 \text{ MHz}$ $-280 \text{ MHz}, [0, -1],$		
Diamond:	natural type IIa, after 2 MeV electron irradiation, anneals in at 600 °C, anr	leals out at 1200 °C,	
	type la,b after neutron irradiation, after Ni or C ion bombardment		
Remark:	D values dependent on temperature of measurement and anneal	(O) Manual and a	
Model:	three-vacancy chain, complex of divacancy and substitutional oxygen:	$(O_s)v_2$, complex of	
D	trivacancy and interstitual oxygen: $(O_i)V_3$		
References:	/3L1, //C, //L1, /8L2, /9C, /9V, 83F2, 83L1, 80L, 88L2, 89N1, 90E, 94	1114	
Spectrum R6			
Symmetry:	orthorhombic-I		
Spin:	S = 1		
g-tensor:	$g_1 = 2.0021, [1, 0, 0] $		
	$g_2 = 2.0014, [0, 1, 1] $		
	$g_3 = 2.0021, [0, -1, 1] $		
D-tensor:	$D_1 = -57.5$ MHz, $\ [1, 0, 0]$		
	$D_2 = + 119.7 \text{ MHz}, [0, 1, 1] $		
	$D_3 = -62.2 \text{ MHz}, \parallel [0, -1, 1]$		
Diamond:	natural type Ha, after 2 MeV electron irradiation, anneals in at 800 °C, and	leals out at 1400 °C,	
	type la,b after neutron irradiation		
Model:	five-vacancy chain, multi-oxygen-vacancy complex		
References:	73L1, 77C, 77L1, 78L2, 79C, 79V, 83F2, 85L1, 86L, 87W, 88L2, 89N1, 9	41N4	
Spectrum R7			
Symmetry:	orthorhombic-I		
Spin:	S = 1		
g-tensor:	$g_1 = 2.0025, [1, 0, 0] $		
	$g_2 = 2.0019, [0, 1, 1] $		
	$g_3 = 2.0028, [0, -1, 1] $		

Ref.	p.	651
	P •	~~]

4.1 Diamond (C)

D-tensor:	$D_1 = -160.2 \text{ MHz}, [1, 0, 0]]$ $D_2 = +389.3 \text{ MHz}, [0, 1, 1]]$ $D_3 = -229.1 \text{ MHz}, [0, -1, 1]]$
Diamond:	natural type IIa, after 2 MeV electron irradiation, anneals in at 950 0 C, anneals out at 1450 0 C
Remark:	earlier spin value $S = 3/2$ incorrect
Model:	multi-oxygen-vacancy complex $[(O_s)_2V, (O_i)_2V_3]$
References:	73L1, 77C, 78L2, 79C, 79V, 83F2, 85L1, 86L, 88L2, 94N4

Spectrum R8

Symmetry:	orthorhombic-I
Spin:	S = 1 (or: $S = 3/2$)
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.00$
D-tensor:	$D_1 = -168 \text{ MHz}, \ [1, 0, 0]]$
	$D_2 = +336 \text{ MHz}, [0, 1, 1] $
	$D_3 = -168 \text{ MHz}, [0, -1, 1] $
	(for $S = 3/2$: $D_{\parallel [011]} = +168$ MHz, $D_{\perp [011]} = -84$ MHz)
Diamond:	natural type IIa, after 2 MeV electron irradiation, anneals in at 900 0 C, anneals out at 1400 0 C
Model:	three-vacancy chain, multi-oxygen-vacancy complex: $(O_i)_3V_3$
References:	73L1, 77C, 78L2, 79C, 79V, 83F2, 85L1, 86L, 88L2, 94N4

Spectrum R9

Symmetry:	orthorhombic-I
Spin:	S = 1 (or: $S = 3/2$)
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.00$
D-tensor:	$D_1 = -454 \text{ MHz}, [1, 0, 0] $
	$D_2 = +908 \text{ MHz}, [0, 1, 1] $
	$D_3 = -454$ MHz, $\ [0, -1, 1]]$
	(for $S = 3/2$: $D_{\parallel [011]} + 454$ MHz, $D_{\perp [011]} = -227$ MHz)
Diamond:	natural type IIa, after 2 MeV electron irradiation, anneals in at 900 ⁰ C, anneals out at 1250 ⁰ C
Model:	oxygen-vacancy complex: O_sV , O_iV_2
References:	73L1, 77C, 78L2, 79C, 79V, 83F2, 86L, 88L2, 94N4

Spectrum R10

Symmetry:	orthorhombic-I
Spin:	S = 1 (or: $S = 3/2$)
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.00$
D-tensor:	$D_1 = -35 \text{ MHz}, [1, 0, 0] $
	$D_2 = +70 \text{ MHz}, [0, 1, 1] $
	$D_3 = -35 \text{ MHz}, [0, -1, 1] $
	(for $S = 3/2$: $D_{\parallel [011]} = +35$ MHz, $D_{\perp [011]} = -17.5$ MHz)
Diamond:	natural type IIa, after 2 MeV electron irradiation, anneals in at 900 0 C, anneals out at 1200 0 C
Model:	oxygen-multi-vacancy complex: O_sV_5 , O_iV_6
References:	73L1, 77C, 78L2, 79C, 79V, 83F2, 85L1, 86L, 88L2, 94N4

4.1 Diamond (C)

32

Symmetry:	orthorhombic-I
Spin:	S = 1 (or: $S = 3/2$)
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.00$
D-tensor:	$D_1 = -27 \text{ MHz}, [1, 0, 0] $
	$D_2 = +54 \text{ MHz}, [0, 1, 1] $
	$D_3 = -27 \text{ MHz}, [0, -1, 1] $
	(for $S = 3/2$: $D_{\parallel [011]} = +27$ MHz, $D_{\perp [011]} = -13.5$ MHz)
Diamond:	natural type IIa, after 2 MeV electron irradiation, anneals in at 900 0 C, anneals out at 1200 0 C
Model:	oxygen-multi-vacancy complex: O_sV_6 , O_iV_7
References:	73L1, 77C, 78L2, 79C, 79V, 83F2. 85L1, 86L, 88L2, 94N4, 97B2

Spectrum R12

Symmetry:	trigonal
Spin:	S = 1 (or: $S = 3/2$)
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.00$
D-tensor:	$D_{\parallel} = + 104 \text{ MHz}, \parallel [1, 1, 1]$
	$D_{\perp} = -52 \text{ MHz}, \perp [1, 1, 1]$
	(for $S = 3/2$: $D_{\parallel [111]} = +52$ MHz, $D_{\perp [111]} = -26$ MHz)
Diamond:	natural type IIa, after 2 MeV electron irradiation, anneals in at 1100 °C, still present after
	anneal at 1650 ⁰ C
References:	73L1, 77C, 78L2, 79C, 83F2, 85L1, 88L2, 94N4

Spectrum R13

Symmetry:	triclinic
Spin:	<i>S</i> = 1
g-tensor:	$g_1 = 2.0021, [+ 0.696, + 0.696, + 0.174]$
	$g_2 = 2.0029, \perp [+0.696, +0.696, +0.174]$
	$g_3 = 2.0029, \perp [+0.696, +0.696, +0.174]$
D-tensor:	$D_1 = + 1365 \text{ MHz}, \ [+ 0.917, + 0.301, + 0.261]$
	$D_2 = -515$ MHz, $\ [+0.039, +0.584, -0.811]$
	$D_3 = -850 \text{ MHz}, [-0.396, +0.754, +0.524] $
Diamond:	natural type IIa, after 2 MeV electron irradiation at room temperature, anneals out at $400 \ ^{0}C$
Model:	complex of substitutional impurity and split interstitial carbon
References:	83L2, 85L1, 88L2, 94N3, 96L1

Spectrum R14

Symmetry:	triclinic
Spin:	S = 1
g-tensor:	$g_1 = 2.0018, \big\ [+0.264, +0.961, -0.087]$
	$g_2 = 2.0022, \ [-0.857, +0.192, -0.478]$
	$g_3 = 2.0025, \big\ [-0.443, + 0.201, + 0.874] $

Ref. p. 65]	

D -tensor:	$D_1 = + 165.9 \text{ MHz}, [+ 0.916, + 0.379, + 0.132]$ $D_2 = - 78.2 \text{ MHz}, [+ 0.140, + 0.007, - 0.990]$ $D_3 = - 87.7 \text{ MHz}, [- 0.376, + 0.925, - 0.046]$
Diamond:	natural type Ia and IIa, after neutron and electron irradiation at room temperature, anneals out at 600 $^0\mathrm{C}$
Model:	complex of impurity and interstitial carbon
References:	84L2, 85L1, 88L2, 94L5, 94N3, 99T1

Spectrum R15

Symmetry:	triclinic
Spin:	<i>S</i> = 1
g-tensor:	$g_1 = 2.0018, \ [+0.521, +0.389, +0.760]$
	$g_2 = 2.0023, \perp [+0.521, +0.389, +0.760]$
	$g_3 = 2.0023, \perp [+0.521, +0.389, +0.760]$
D -tensor:	$D_1 = + 137.3 \text{ MHz}, [+ 0.719, + 0.633, + 0.288]$
	$D_2 = -64.2 \text{ MHz}, [+0.695, -0.644, -0.319] $
	$D_3 = -73.1 \text{ MHz}, [-0.016, +0.429, -0.903] $
Diamond:	natural type Ia and IIa, after neutron and electron irradiation at room temperature, anneals out
	at 500 ⁰ C
Model:	complex of impurity and interstitial carbon
References:	84L2, 85L1, 88L2, 94L5, 94N3

Spectrum R16

Symmetry:	low
Spin:	S = 1/2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.003, g_{\min} \approx 2.0026, g_{\max} \approx 2.0033$
Diamond:	natural type IIa, after 2 MeV electron irradiation at room temperature, anneals in at 700 °C,
	anneals out at 900 ⁰ C
Remark:	values of parameters still tentative
References:	84L2, 86L, 88L2, 94N4

Spectrum R17

Symmetry:	triclinic
Spin:	S = 1
g-tensor:	$g_1 = 2.0020, [+0.437, +0.686, -0.582] $
	$g_2 = 2.0026, \perp [+0.437, +0.686, -0.582]$
	$g_3 = 2.0026, \perp [+0.437, +0.686, -0.582]$
D-tensor:	$D_1 = +245.8 \text{ MHz}, [+0.932, +0.311, +0.185] $
	$D_2 = -95.0 \text{ MHz}, [+0.259, -0.930, +0.259]$
	$D_3 = -150.8 \text{ MHz}, [+0.253, -0.193, -0.948]$
Diamond:	natural type IIa, after 2 MeV electron irradiation at room temperature, anneals in at 700 ⁰ C, still
	present after anneal at 1650 °C
References:	84L2, 85L1, 88L2, 94N4

4.1 Diamond (C)

Spectrum R18

Spin:	S = 1/2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0029$
Diamond:	natural type IIa, after 2 MeV electron irradiation at room temperature, anneals in at 900 ⁰ C, still
	present after anneal at 1650 ⁰ C
References:	86L, 88L2, 91B, 94N4

Spectrum RM1

Symmetry:	monoclinic-I
Spin:	S = 1/2
g-tensor:	$g_1 = 2.1719$, [+0.615, +0.615, +0.494]
-	$g_2 = 2.052, [+0.707, -0.707, 0.000]$
	$g_3 = 2.042, [-0.349, -0.349, +0.869] $
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 4 sites
	$A_1 = 31.8 \text{ MHz}, [+0.707, -0.707, 0.000] $
	$A_2 = 26.4 \text{ MHz}, \parallel [0.000, 0.000, +1.000]$
	$A_3 = 23.1 \text{ MHz}, [+0.707, +0.707, 0.000] $
Diamond:	synthetic, nickel catalyst
Model:	nickel-vacancy-4-nitrogen center
References:	99M3

Spectrum RO1

Symmetry:	tetragonal
Spin:	S = 1/2
g-tensor:	$g_{\parallel} = 2.0151, \parallel [0, 0, 1]$
	$g_{\perp} = 2.2113, \perp [0, 0, 1]$
Diamond:	natural, Ural
Model:	nickel related
References:	94M, 02B

Spectrum S1 (S2)

Symmetry:	cubic
Spin:	S = 3/2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0023$, at room temperature
	$(g_1 + g_2 + g_3)/3 = 2.0027$, in temperature range 477 K
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 10%, 4 sites
	$T = 4$ K: $A_{\parallel} = 141.8$ MHz, $\parallel [1, 1, 1]$
	$A_{\perp}^{''} = 81.7 \text{ MHz}, \perp [1, 1, 1]$
	$T = 77$ K: $A_{\parallel} = 141.5$ MHz, $\parallel [1, 1, 1]$
	$A_{\perp}^{''} = 81.9 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 10%, 12 sites
	$T = 4$ K: $A_1 = 13.42$ MHz, $\ [+0.6086, +0.6086, -0.5090]$
	$A_2 = 9.40 \text{ MHz}, [+0.3599, +0.3599, +0.8607]$
	$A_3 = 9.23 \text{ MHz}, [-0.7071, +0.7071, 0] $
	$T = 77$ K: $A_{\parallel} = 13.5$ MHz, $\parallel [1, 1, 1]$
	$A_{\perp} = 9.5 \text{ MHz}, \perp [1, 1, 1]$

Ref. p. 65]	4.1 Diamond (C)	35
Diamond:	natural, after electron or neutron irradiation at low and at room temperature, synthetic g from Ni, Ti solvent, anneals out at 800 0 C	grown
Remarks:	original label A-center for both S1 and S2, earlier interpretation that S1 and S2 spectra be to different centers abandoned, ¹³ C enriched synthetic diamond and ENDOR in Ref. 92I	elong
Model:	negative isolated lattice vacancy in ${}^{4}A_{2}$ ground state, crystallographic point group $\overline{4}$ 3m	
References:	63B, 65D2, 65D3, 66C2, 70L, 71L, 73L2, 75L1, 77C, 78L2, 83F2, 86L, 87W, 88L2, 8 92B, 92I, 93T2, 93W2, 94B, 94N3, 95B1, 95W1, 96T7, 97T2, 99T5, 00G	89N1,

.

Spectrum S1*	* (Fig. 14)
Symmetry:	cubic
Spin:	S = 3/2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0023$
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 4 sites
	$A_{\parallel} = 91.3 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 35.8 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 12 sites
	$A_{\parallel} = 9.1 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 6.9 \text{ MHz}, \perp [1, 1, 1]$
Diamond:	natural, after electron irradiation and anneal
Model:	negative isolated lattice vacancy in ${}^{4}T_{1}$ excited state
Reference:	93W2, 00G

Spectrum S2

Remark: see spectrum S1 (S2)

Spectrum S3

Symmetry:	isotropic
Spin:	S = 1/2 .
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.00238$
Diamond:	natural, after electron irradiation
Remark:	original label C-center
References:	63B, 65D3, 66C2, 71L, 77C, 78L2, 83F2, 94N3

Spectrum S4

Symmetry:	isotropic
Spin:	S = 1/2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.00234$
Diamond:	natural, after electron irradiation
Remarks:	two lines separated by $\approx 0.1 \text{ mT}$
	original label B-center
References:	63B, 66C2, 71L, 77C, 78L2, 83F2, 94N3

Spectrum TI1

Symmetry:	isotropic
Spin:	S = 1/2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0027$
Diamond:	pulverised
Model:	surface damage
Remark:	probably identical to N5
References:	61W, 67B, 67S2, 74S2, 78S2, 79S, 91B, 94N6

Spectrum W1

Symmetry:	orthorhombic-I
Spin:	S = 1
g-tensor:	$g_1 = 2.0029, [1, 0, 0] $
	$g_2 = 2.0026, [0, 1, 1] $
	$g_3 = 2.0029, [0, -1, 1] $
D-tensor:	$D_1 = -217 \text{ MHz}, [1, 0, 0] $
	$D_2 = +374 \text{ MHz}, [0, 1, 1] $
	$D_3 = -157 \text{ MHz}, \parallel [0, -1, 1]$
Diamond:	natural type Ib
Remark:	possibly produced by geological irradiation and heating, centers possibly equal to A2, R5, R7
	or R8 observed after electron or neutron irradiation and anneal
Model:	native three-vacancy center
References:	71S1, 73L1, 77C, 78L2, 79C, 79L1, 83F2

Spectrum W2

Symmetry:	orthorhombic-I
Spin:	S = 1
g-tensor:	$g_1 = 2.0030, \ [1, 0, 0]]$
	$g_2 = 2.0027, [0, 1, 1] $
	$g_3 = 2.0030, [0, -1, 1] $
D-tensor:	$D_1 = -206 \text{ MHz}, [1, 0, 0] $
	$D_2 = +411 \text{ MHz}, [0, 1, 1] $
	$D_3 = -206 \text{ MHz}, [0, -1, 1] $
Diamond:	natural type Ib
Remark:	possibly produced by geological irradiation and heating, centers possibly equal to A2, R5, R7
	or R8 observed after electron or neutron irradiation and anneal
Model:	native three-vacancy center
References:	71S1, 73L1, 77C, 78L2, 79C, 79L1, 83F2

Spectrum W3

Symmetry:	orthorhombic-I
Spin:	<i>S</i> = 1

g-tensor:	$g_1 = 2.0029, [1, 0, 0]$ $g_2 = 2.0026, [0, 1, 1]$
	$g_3 = 2.0029, [0, -1, 1] $
D-tensor:	$D_1 = -230 \text{ MHz}, \parallel [1, 0, 0]$ $D_2 = +460 \text{ MHz}, \parallel [0, 1, 1]$
	$D_3 = -230 \text{ MHz}, [0, -1, 1] $
Diamond:	natural type Ib
Remark:	possibly produced by geological irradiation and heating, centers possibly equal to A2, R5, R7 or R8 observed after electron or neutron irradiation and anneal
Model:	native three-vacancy center
References:	71S1, 73L1, 77C, 78L2, 79C, 79L1, 83F2

.

Spectrum W4

Symmetry:	orthorhombic-I
Spin:	S = 1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.00$
D -tensor:	$D_1 = -74 \text{ MHz}, \ [1, 0, 0]]$
	$D_2 = +147 \text{ MHz}, \parallel [0, 1, 1]$
	$D_3 = -74$ MHz, $ [0, -1, 1] $
Diamond:	natural type IIb, semiconducting, after 2 MeV electron irradiation at room temperature
References:	77C, 78L2, 79C, 83F2, 94N3

Spectrum W5

Symmetry:	orthorhombic-I
Spin:	S = 1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.00$
D -tensor:	$D_1 = -53 \text{ MHz}, [1, 0, 0] $
	$D_2 = +105 \text{ MHz}, [0, 1, 1] $
	$D_3 = -53$ MHz, $\ [0, -1, 1]]$
Diamond:	natural type IIb, semiconducting, after 2 MeV electron irradiation at room temperature
References:	77C, 78L2, 79C, 83F2, 94N3

Spectrum W6

Spectrum W7 (Fig. 15)

Symmetry:	triclinic
Spin:	S = 1/2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0028$ (Ref. 73L2), 2.0023 (Refs. 91N1, 91N2)
A-tensor:	nucleus N ₁ , isotope ¹⁴ N, spin $I = 1$, abundance 99.63%, 1 site
	$T < 77$ K: $A_{\parallel} = 121.39$ MHz, $\parallel [1, 1, 1]$
	$A_{\perp} = 86.00 \text{ MHz}, \perp [1, 1, 1]$
Q-tensor:	$T < 77$ K: $Q_{\parallel} = -2.55$ MHz, $\parallel [1, 1, 1]$
	$Q_{\perp} = +1.27 \text{ MHz}, \perp [1, 1, 1]$

38	4.1 Diamond (C)	[Ref. p.65
A-tensor:	nucleus N ₂ , isotope ¹⁴ N, 1 site,	
	$T < 77$ K: $A_1 = 13.58$ MHz, $\ [-0.4936, +0.7418, +0.4540]$	
	$A_2 = 16.01 \text{ MHz}, \parallel [+0.8663, +0.4053, +0.2920]$	
	$A_3 = 14.00 \text{ MHz}, [-0.0347, -0.5431, +0.8390]$	
Q-tensor:	$T < 77$ K: $Q_1 = +0.13$ MHz, $\ [-0.6427, +0.5931, +0.4850]$	
	$Q_2 = -0.13$ MHz, $\ [+0.7622, +0.5897, +0.2761]$	
	$Q_3 = 0.00 \text{ MHz}, [+0.1233, -0.5301, +0.8390]$	
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 2 sites	
	$T = 450 \ ^{0}\text{C}$: $A_1 = 57.7 \text{ MHz}$, [1, 0, 0]	
•	$A_2 = 50.2 \text{ MHz}, \parallel [0, 1, 1]$	
	$A_3 = 64.2 \text{ MHz}, \parallel [0, -1, 1]$	
Diamond:	natural brown type I, plastically deformed	
Remarks:	anisotropic distribution of orientations, ¹⁴ N ENDOR in Refs. 89N4, 91N1 a	nd 94B
Model:	two non-equivalent substitutional nitrogen atoms in non-coplanar config	uration $N_1 CCN_2^+$,
	close to dislocation, motional averaging for temperatures above 200 K with	h activation energy
	0.24 eV	
References:	70L, 73L2, 75S1, 78L2, 78W, 79C, 82L1, 83F2, 85L2, 89N4, 91N1, 91N2	2, 92B, 94B, 95B1,
	99B1	
Spectrum W8		
Symmetry:	cubic	
Spin:	S = 3/2	
g value:	g = 2.0319	
A value:	nucleus ⁶¹ Ni, spin $I = 3/2$, abundance 86%, 1 site	
	A = 18.5 MHz	
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 4 nearest-neighbor sites	
	$A_{\parallel} = 38.07 \text{ MHz}, \parallel [1, 1, 1]$	
	$A_{\perp} = 9.67 \text{ MHz}, \perp [1, 1, 1]$	
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 12 next-nearest neighbor sites	
	$A_1 = 10.86$ MHz, $\ [+ 0.6124, + 0.6124, + 0.5000]$	
	$A_2 = 7.73 \text{ MHz}, \ [-0.3535, -0.3535, +0.8660]$	
	$A_3 = 7.65 \text{ MHz}, [-0.7071, +0.7071, 0.0000]$	
Diamond:	synthetic (powder) grown from Ni,Ti or Ni,Zr solvent, natural type Ia,b pow	der (77L2)
Remarks:	hyperfine-tensor $A(^{o1}Ni)$ measured in synthetic enriched Ni doped dian	mond (Ref. 71S3),
	hyperfine interaction with ¹³ C measured by FT– ESR (ESEEM) in Ref. 90	I2, ODMR on 2.56
	eV luminescence in Refs. 94P3, 95H and 95N	
Model:	negative substitutional nickel impurity, electron configuration 3d ⁷	
References:	66L, 68P, 70B, 71S3, 72B2, 75B, 75S3, 77L2, 78B, 78L2, 79C, 82C, 83F2, 90	F2, 90I1, 90I2, 90I3,
	9014, 90S, 92B, 94B, 94H2, 94N2, 94P3, 95G2, 95H, 95N, 97O, 98C, 98N2	, 99B1, 99D, 00C1,
	01P1, 01P2, 02B, 02P	
Spectrum W9		

Symmetry: orthorhombic Spin: S = 1

g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.002$
D -tensor:	$D_{\parallel} = +132 \text{ MHz}, \parallel [0, -1, 1]$
	$D_{\perp} = -66 \text{ MHz}, \perp [0, -1, 1]$
Diamond:	natural brown type IIa
Model:	native center, still present after anneal at 1000 °C
References:	78L2, 79L1, 83F2, 83L1, 87L1, 87L2

Spectrum W10

Symmetry:	trigonal
Spin:	<i>S</i> = 2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.001$
D -tensor:	$D_{\parallel} = + 102.8 \text{ MHz}, \parallel [1, 1, 1]$
	$D_{\perp} = -51.4 \text{ MHz}, \perp [1, 1, 1]$
Diamond:	natural brown type IIa
Remarks:	spin value earlier reported as $S = 1$, D -tensor temperature dependent (Ref. 87L2)
Model:	interstitial neutral chromium (tentative)
References:	78L2, 79L1, 83F1, 83F2, 83L1, 87L1, 87L2, 95L, 01B, 02B

Spectrum W11

Symmetry:	triclinic
Spin:	S = 3/2 (or: $S = 1$, Ref. 93T1)
g-tensor:	$g_1 = 2.0024$
	$g_2 = 2.0022$
	$g_3 = 2.0021$
D -tensor:	$D_1 = -241.3 \text{ MHz}, [+0.025, +0.751, +0.659] $
	$D_2 = -199.6 \text{ MHz}, [+0.719, -0.474, +0.508] $
	$D_3 = +440.9 \text{ MHz}, [+0.700, +0.463, -0.544] $
Diamond:	natural or synthetic type Ib, after neutron or electron irradiation, anneals out at 250300 ⁰ C
Remarks:	EPR from excited state about 1.5 meV above ground state, g-tensor slightly angular dependent:
	anisotropy of principal values not reliably determined, parameters of D-tensor compounded
	from Refs. 94L1 and 94W1
Model:	negative vacancy, perturbed by nearby impurity (nitrogen)
References:	78L2, 83F2, 87W, 89W, 91W, 93T1, 94L1, 94N3, 94W1, 95B1

Spectrum W12

Symmetry:	triclinic
Spin:	S = 3/2
g-tensor:	$g_1 = 2.0047, [-0.797, -0.110, +0.594] $
	$g_2 = 1.9967, [+0.597, -0.370, +0.712] $
	$g_3 = 1.9990, [+0.139, +0.916, +0.376] $
D -tensor:	$D_1 = -144.6$ MHz, $\ [-0.412, +0.836, +0.364]$
	$D_2 = -337.4$ MHz, [+ 0.676, -0.009, + 0.737]
	$D_3 = +481.9 \text{ MHz}, [+0.623, +0.550, -0.557] $
Diamond:	natural or synthetic type Ib, after neutron or electron irradiation, anneals out at $375400 \ ^{0}C$
	• ••

40	4.1 Diamond (C)	[Ref. p.65
Remarks:	anisotropy of g-tensor not reliably determined, parameters of g and D-tensor from Refs. 94L1 and 94W1	s compounded
Model:	negative vacancy, perturbed by nearby impurity (nitrogen)	
References:	78L2, 83F2, 87W, 89W, 91W, 93T1, 94L1, 94N3, 94W1, 95B1	
Spectrum W13		
Symmetry:	monoclinic-I	
Spin:	S = 3/2	
g-tensor:	$g_1 = 1.9982, [0.000, +0.707, +0.707]$	
	$g_2 = 1.9975$, [+ 0.766, - 0.455, + 0.455]	
	$g_3 = 2.0037, [+ 0.643, + 0.542, - 0.542]$	
D-tensor:	$D_1 = -193.0 \text{ MHz}, \parallel [0.000, +0.707, +0.707]$	
	$D_2 = -307.7 \text{ MHz}, \parallel [+0.669, -0.526, +0.526]$	
	$D_3 = +500.7 \text{ MHz}, [+0.743, +0.473, -0.473]$	
Diamond:	natural or synthetic type Ib, after neutron or electron irradiation, anneals out at 37	75400 ⁰ C
Remarks:	anisotropy of g-tensor not reliably determined, parameters of g and D-tensor	s compounded
	from Refs. 94L1 and 94W1	
Model:	negative vacancy, perturbed by nearby impurity (nitrogen)	
References:	78L2, 83F2, 87W, 89W, 91W, 93T1, 94L1, 94N3, 94W1, 95B1	
Spectrum W14		

Spectrum W15 (Figs. 16-18)

Symmetry:	trigonal
Spin:	<i>S</i> = 1
g-tensor:	$g_{\parallel} = 2.0028, \parallel [1, 1, 1]$
	$g_{\perp} = 2.0028, \perp [1, 1, 1]$
D-tensor:	$D_{\parallel} = + 1916 \text{ MHz}, \parallel [1, 1, 1]$
	$D_{\perp} = -958 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 1 site
-------------	--
	$A_{\parallel} = 2.30 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 2.10 \text{ MHz}, \perp [1, 1, 1]$
Q-tensor:	nucleus ¹⁴ N, 1 site
	$Q_{\parallel} = -3.36 \text{ MHz}, \parallel [1, 1, 1]$
	$Q_{\perp} = +1.68 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 3 sites
	$A_{\parallel} = 205 \text{ MHz}, \parallel [+0.627, -0.551, -0.551]$
	$A_{\perp} = 123 \text{ MHz}, \perp [+0.627, -0.551, -0.551]$
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 3 sites
	$(A_1 + A_2 + A_3)/3 = 15.1 \text{ MHz}$
Diamond:	natural type Ib, after electron or neutron irradiation, anneals in at 700 ⁰ C, still present after
	anneal at 1300 °C
Remarks:	spin-Hamiltonian parameters also determined by Raman heterodyne detected EPR (Fig. 17)
	(Refs. 90F1, 90H, 92H1, 92M2, 93H1, 96W1, 96W2) or ENDOR (Fig. 18) (Refs. 90M, 93H2),
	by spectral hole burning (Refs. 84H, 87R, 92R1) and ODMR (Fig. 16) (Refs. 8801, 9002)
	using optical transition at wavelength 637 nm ($E = 1.945 \text{ eV}$) (Ref. 76D) from ³ A spin-triplet
	ground state to ³ E excited state. Spin dynamics in Refs. 89O, 90O1, 91R, 92H3, 92O. Sign of
	D_{\parallel} positive (Ref. 90M)
Model:	negative nitrogen-vacancy pair
References:	75L1, 76D, 77L3, 78L2, 80W, 83F2, 84H, 87R, 87W, 88H1, 88L1, 88O1, 89N1, 89O, 90F1,
	90H, 90M, 90O1, 90O2, 90O3, 91G, 91O, 91R, 92B, 92H1, 92H3, 92M2, 92M1, 92O, 92R1,
	92R2, 93H1, 93H2, 93H3, 93H4, 94B, 94D, 94N4, 95B1, 96B, 96L2, 96L3, 96W1, 96W2,
	97G1, 97L, 00N2, 01C2, 02B

Spectrum W16

Symmetry:	monoclinic-I
Spin:	S = 1 (or: $S = 3/2$)
g-tensor:	$g_1 = 2.0029, [+0.614, +0.558, -0.558]$
	$g_2 = 2.0026$, [0.000, + 0.707, + 0.707]
	$g_3 = 2.0022, [+0.789, -0.434, +0.434]$
D -tensor:	$D_1 = +1652 \text{ MHz}, [+0.614, +0.558, -0.558] $
	$D_2 = -803 \text{ MHz}, \parallel [0.000, +0.707, +0.707]$
	$D_3 = -849 \text{ MHz}, \parallel [+0.789, -0.434, +0.434]$
	(for $S = 3/2$: $D_1 = +826$ MHz, $D_2 = -402$ MHz, $D_3 = -425$ MHz)
Diamond:	natural type Ib, after electron or neutron irradiation, anneals in at 800 ⁰ C, still present after
	anneal at 1400 ⁰ C
References:	78L2, 83F2, 87W, 94N4

.

Spectrum W17

Symmetry:	triclinic
Spin:	S = 1 (or: $S = 3/2$)

g-tensor:	$g_1 = 2.0033, [+0.620, +0.555, -0.555]$ $g_2 = 2.0025, [+0.289, -0.819, -0.496]$
.	$g_3 = 2.0018$, $ [+0.730, -0.147, +0.668] $
D-tensor:	$D_1 = +1568 \text{ MHz}, [+0.020, +0.000, -0.000]}$ $D_2 = -717 \text{ MHz}, [+0.289, -0.819, -0.496]$
	$D_3 = -851 \text{ MHz}, [+0.730, -0.147, +0.668]$
	(for $S = 3/2$: $D_1 = +784$ MHz, $D_2 = -359$ MHz, $D_3 = -426$ MHz)
Remark:	principal directions of g and D-tensors do not reflect triclinic symmetry
Diamond:	natural type Ib, after electron or neutron irradiation, anneals in at 900 0 C, still present after anneal at 1400 0 C
References:	78L2, 83F2, 87W, 94N4

Spectrum W18

Symmetry:	monoclinic-I
Spin:	S = 1 (or: $S = 3/2$)
g-tensor:	$g_1 = 2.0033, [+ 0.617, + 0.556, - 0.556]$
	$g_2 = 2.0027, \parallel [0.000, + 0.707, + 0.707]$
	$g_3 = 2.0023, [+0.787, -0.436, +0.436]$
D-tensor:	$D_1 = +1421 \text{ MHz}, [+0.617, +0.556, -0.556] $
	$D_2 = -666 \text{ MHz}, \parallel [0.000, +0.707, +0.707]$
	$D_3 = -753 \text{ MHz}, [+0.787, -0.436, +0.436] $
	(for $S = 3/2$: $D_1 = +711$ MHz, $D_2 = -333$ MHz, $D_3 = -377$ MHz)
Diamond:	natural type Ib, after electron or neutron irradiation, anneals in at 900 °C, still present after
	anneal at 1400 ⁰ C
References:	78L2, 83F2, 87W, 94N4

Spectrum W19

Symmetry:	monoclinic-I	
Spin:	S = 1 (or: $S = 3/2$)	
g-tensor:	$g_1 = 2.0028$, $\ [+0.347, +0.663, -0.663]$	
	$g_2 = 2.0031, [0.000, + 0.707, + 0.707]$	
	$g_3 = 2.0029, [+0.938, -0.245, +0.245]$	
D-tensor:	$D_1 = +941 \text{ MHz}, [+0.347, +0.663, -0.663]$	
	$D_2 = -333 \text{ MHz}, \parallel [0.000, +0.707, +0.707]$	
	$D_3 = -608 \text{ MHz}, [+0.938, -0.245, +0.245] $	
	(for $S = 3/2$: $D_1 = +471$ MHz, $D_2 = -167$ MHz, $D_3 = -304$ MHz)	
Diamond:	natural type Ib diamond, after electron or neutron irradiation, after anneal at 900 0 C	
References:	78L2, 83F2, 94N4	

Spectrum W20

Symmetry:	monoclinic-I
Spin:	S = 1/2

[Ref. p.65

g-tensor:	$g_1 = 2.074$, [+ 0.259, + 0.683, - 0.683] $g_2 = 2.100$, [0.000, + 0.707, + 0.707]
	$g_3 = 2.018$, $\ [+0.966, -0.183, +0.183]$
Diamond:	natural type Ib, after electron irradiation and aneal at $400 \ ^{0}\text{C}$
References:	78L2, 83F2, 94N4

Spectrum W21

Symmetry:	orthorhombic-I
Spin:	S = 1/2
g-tensor:	$g_1 = 2.0026, [0, 1, -1] $
	$g_2 = 2.0090, [1, 0, 0] $
	$g_3 = 2.0044, [0, 1, 1] $
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 1 site
	$A_{\parallel} = 117 \text{ MHz}, \parallel [0, 1, -1]$
	$A_{\perp} = 0$ MHz, $\perp [0, 1, -1]$
A-tensor:	nucleus ¹⁴ N, 2 sites
	$A_{\parallel} = 20.4 \text{ MHz}, \parallel [-0.474, -0.623, +0.623]$
	$A_{\perp} = 12.6 \text{ MHz}, \perp [-0.474, -0.623, +0.623]$
Q-tensor:	nucleus ¹⁴ N, 2 sites
	$Q_{\parallel} = -3.3 \text{ MHz}, \parallel [-0.474, -0.623, +0.623]$
	$Q_{\perp} = +1.65 \text{ MHz}, \perp [-0.474, -0.623, +0.623]$
Diamond:	natural yellow type Ia
Model:	complex of three substitutional nitrogen atoms coplanar in {011} plane
References:	78L2, 78L4, 82L2, 83F2, 94B, 94W2, 95B1, 99B1, 99B3

Spectrum W22

Symmetry:	monoclinic-I
Spin:	S = 1/2
g-tensor:	$g_1 = 2.1096$, [0.000, + 0.707, + 0.707]
	$g_2 = 2.0817, [+0.940, -0.242, +0.242]$
	$g_3 = 2.0216, \ [-0.342, -0.664, +0.664]]$
Diamond:	natural type Ib
Model:	related to oxygen (tentative)
References:	79L1, 83F2

Spectrum W23

Symmetry:	monoclinic-I
Spin:	S = 1/2
g-tensor:	$g_1 = 2.1121, [0.000, +0.707, +0.707]$
	$g_2 = 2.0833, [+0.940, -0.242, +0.242] $
	$g_3 = 2.0197, \ [-0.342, -0.664, +0.664]]$
Diamond:	natural type Ib
Model:	related to oxygen (tentative)
References:	79L1, 83F2

Symmetry:	trigonal	
Spin:	S = 1/2	
g-tensor:	$g_{\parallel} = 2.0025, \parallel [1, 1, 1]$	
	$g_{\perp} = 2.0025, \perp [1, 1, 1]$	
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 2 sites	
	$A_{\parallel} = 155.26 \text{ MHz}, \parallel [1, 1, 1]$	
	$A_{\perp} = 81.51 \text{ MHz}, \perp [1, 1, 1]$	
Q-tensor:	$Q_{\parallel} = -1.497 \text{ MHz}, \parallel [1, 1, 1]$	
	$Q_{\perp} = +0.748 \text{ MHz}, \perp [1, 1, 1]$	
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 6 sites	
	$(A_1 + A_2 + A_3)/3 = 12.3 \text{ MHz}$	
Diamond:	natural yellow type Ia	
Remarks:	hyperfine interaction with ¹⁵ N and ¹⁴ N ENDOR in Ref. 94T1	
Model:	complex of two equivalent nitrogen atoms on nearest-neighbor substitutional sites, positively	
	charged	
References:	79W, 81W, 83F2, 83W, 88H1, 91N2, 93K, 94B, 94T1, 94T2, 95B1, 95W3, 96B	

Spectrum W25

Symmetry:	monoclinic-I
Spin:	<i>S</i> = 1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0027$
D-tensor:	$D_{zz} = -2732 \text{ MHz}, \parallel [0, 1, 1]$
	$D_{xx} = +1606 \text{ MHz}, [-1, -1, 1] $
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%
	$A_{\parallel} = 29.4 \text{ MHz}, \parallel [-0.669, -0.525, +0.525]$
	$A_{\perp} = 20.6 \text{ MHz}, \perp [-0.669, -0.525, +0.525]$
Q-tensor:	$Q_{\parallel} = -3.0 \text{ MHz}, \parallel [-0.559, -0.586, +0.586]$
	$Q_{\perp} = +1.5 \text{ MHz}, \perp [-0.559, -0.586, +0.586]$
Diamond:	natural (green) type Ia, after irradiation and anneal to 550750 ⁰ C
Remark:	resonance observed in excited state (*) populated by illumination ($\lambda \le 500 \text{ nm} \approx \text{ZPL}$ of H4 optical center)
Model:	complex of four substitutional nitrogen atoms around divacancy in excited state: $\{[(N_s)_3]VV[(N_s)(C_s)_2]\}^*$
References:	80W, 81L, 83F2, 88H1, 94B, 95B1, 95W2, 96B

Spectrum W26

Symmetry:	orthorhombic-I		
Spin:	S = 1		
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0027$		
D-tensor: $D_{zz} = -2630 \text{ MHz}, [0, 1, 1] $			
	$D_{xx} = +1428 \text{ MHz}, [0, -1, 1] $		
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 2 sites		
	$A_{\parallel} = 21.5 \text{ MHz}, \parallel [-0.423, -0.641, +0.641]$		
	$\ddot{A_{\perp}}$ = 10.2 MHz, \perp [-0.423, -0.641, +0.641]		

Q-tensor:	$Q_{\parallel} = -3.2 \text{ MHz}, \parallel [-0.423, -0.641, +0.641]$
	$Q_{\perp}^{"}$ = + 1.6MHz, \perp [-0.423, -0.641, + 0.641]
Diamond:	natural (green) type Ia, after irradiation and anneal to $550750 \ ^{0}C$
Remark:	resonance observed in excited state (*) populated by illumination ($\lambda \le 500 \text{ nm} \approx \text{ZPL}$ of H3 optical center)
Model:	complex of two equivalent substitutional nitrogen atoms around vacancy in excited state: $(N_s V N_s)^*$
References:	80W, 81L, 83F2, 88H1, 94B, 95B1, 95W2, 96B

Spectrum W27

Symmetry:	monoclinic-I
Spin:	S = 1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0025$
D-tensor:	$D_{\parallel} = + 1794 \text{ MHz}, \parallel [+ 0.208, + 0.692, + 0.692]$
	$D_{\perp} = -897 \text{ MHz}, \perp [+0.208, +0.692, +0.692]$
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%
	$(A_1 + A_2 + A_3)/3 \approx 34 \text{ MHz}$
Diamond:	natural (green) type Ia
Model:	cluster of (two) nitrogen atoms
References:	80W, 83F2, 94B, 95B1

Spectrum W28

Symmetry:	monoclinic-I
Spin:	S = 1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0020$
D-tensor:	$D_1 = -662 \text{ MHz}, [+0.707, -0.707, +0.000] $
	$D_2 = -376$ MHz, $\ [+0.074, +0.074, -0.995]$
	$D_3 = +1038$ MHz, [+ 0.703, + 0.703, + 0.105]
Diamond:	natural (green) type Ia
Model:	cluster of nitrogen atoms
References:	80W, 81L, 83F2, 87W, 94W3, 94B, 95B1

Spectrum W29

Symmetry:	monoclinic-I
Spin:	S = 1 (or: $S = 3/2$)
g-tensor:	$g_1 = 2.002, [0.000, -0.707, +0.707]$
	$g_2 = 2.005, [+0.623, -0.553, -0.553]$
	$g_3 = 1.997, [+0.783, +0.440, +0.440]$
D-tensor:	$D_1 = -596 \text{ MHz}, \parallel [0.000, -0.707, +0.707]$
	$D_2 = +907 \text{ MHz}, \ [+0.623, -0.553, -0.553]$
	$D_3 = -311 \text{ MHz}, \ [+0.783, +0.440, +0.440]$
	(for $S = 3/2$: $D_1 = -298$ MHz, $D_2 = +454$ MHz, $D_3 = -156$ MHz)
Diamond:	natural type I, after neutron or electron irradiation, anneals in above 500 ⁰ C, anneals out above
	800 ⁰ C
References:	83F2, 86L, 87W, 88L1, 94N4, 99K3

4.1 Diamond (C)

46

Symmetry:	trigonal
Spin:	S = 1/2
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.00$
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 2 sites
	$A_{\parallel} = 137 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 62 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 2 sites
	$A_{\parallel} = 12 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 6 \text{ MHz}, \perp [1, 1, 1]$
Diamond:	natural type Ia, after irradiation and anneal to 400 0 C, still present after anneal at 800 0 C
Model:	complex of two pairs of equivalent nitrogen atoms along one <1, 1, 1> axis
References:	81L, 83F2, 88L1, 94B, 94W3, 95B1

Spectrum W31

Symmetry:	trigonal
Spin:	S = 1/2
g-tensor:	$g_{\parallel} = 2.0020, \parallel [1, 1, 1]$
	$g_{\perp} = 2.0025, \perp [1, 1, 1]$
A-tensor:	nucleus ³³ S, spin $I = 3/2$, abundance 0.75%, 1 site
	$A_{\parallel} = 1029 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 1034 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 4 sites
	$A_{\parallel} = 70.6 \text{ MHz}, \parallel [+0.485, +0.618, +0.618]$
	$A_{\perp} = 45.1 \text{ MHz}, \perp [+0.485, +0.618, +0.618]$
A-tensor:	nucleus 13 C, 6 sites
	$A_{\parallel} = 14.9 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 9.8 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ${}^{13}C$, 12 sites
	$(A_1 + A_2 + A_3)/3 = 4.8 \text{ MHz}$
Diamond:	natural type Ib, after heating to above 300 ⁰ C in dark
Model:	ionized interstitial sulphur impurity: $(S_i)^+$
References:	82W1, 83F2, 85W, 86W1, 86W2, 92B, 92W3, 94B, 02B

Spectrum W32

Symmetry:	trigonal
Spin:	S = 1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.002$
D-tensor:	$D_{\parallel} = + 136.4 \text{ MHz}, \parallel [1, 1, 1]$
	$D_{\perp} = -68.2 \text{ MHz}, \perp [1, 1, 1]$
Diamond:	natural type IIb, p-type semiconducting, still present after anneal at $1000 \ ^{0}C$
Model:	native center
References:	83F2, 83L1, 87L1, 87L2, 01B, 02B

Spectrum W33

Symmetry:	monoclinic-I
Spin:	S = 1 (or: $S = 3/2$)
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.003$
D-tensor:	$D_1 = -1175 \text{ MHz}, \parallel [0.000, -0.707, +0.707]$
	$D_2 = + 1857 \text{ MHz}, [+0.515, -0.606, -0.606] $
	$D_3 = -682 \text{ MHz}, [+0.857, +0.364, +0.364] $
	(for $S = 3/2$: $D_1 = -588$ MHz, $D_2 = +929$ MHz, $D_3 = -341$ MHz)
Diamond:	natural and synthetic type Ib, after neutron irradiation, anneals in at 700 0 C, anneals out at 1100 0 C
References:	87W, 88L1, 94N4, 00N2

Spectrum W34

Symmetry:	monoclinic-I
Spin:	S = 1 (or: $S = 3/2$)
g-tensor:	$(g_1 + g_2 + g_3) = 2.002$
D-tensor:	$D_1 = -240 \text{ MHz}, \parallel [0.000, -0.707, +0.707]$
	$D_2 = +766 \text{ MHz}, \ [+0.751, -0.467, -0.467]$
	$D_3 = -526 \text{ MHz}, [+0.660, +0.531, +0.531] $
	(for $S = 3/2$: $D_1 = -120$ MHz, $D_2 = +383$ MHz, $D_3 = -263$ MHz)
Diamond:	natural and synthetic type Ib, after irradiation, anneals in at 800 0 C, anneals out at 1100 0 C
References:	87W, 88L1, 94N4

Spectrum W35

Symmetry:	orthorhombic-I			
Spin:	S = 1			
g-tensor:	$(g_1 + g_2 + g_3)/3 = 1.998$			
D-tensor:	$T = 293 \text{ K}: D_1$	= + 202.2 MHz	T = 130 K:	
	D_2	= - 36.0 MHz		
	<i>D</i> ₃	= – 166.3 MHz		
Diamond:	natural brown typ	e IIa		
Model:	native center			
References:	87L1,87L2			

Spectrum W36

Symmetry:	trigonal
Spin:	S = 1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.002$
D-tensor:	$D_{\parallel} = +103.4 \text{ MHz}, \parallel [1, 1, 1]$
	$D_{\perp} = -51.7 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹¹ B, spin $I = 3/2$, $g_n = -1.79$
	$A_{\parallel} = 8.7 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 6.0 \text{ MHz}, \perp [1, 1, 1]$

T = 130 K:	$D_1 = +207.8 \text{ MHz}, \parallel [0, -1, 1]$
	$D_2 = -34.0 \text{ MHz}, \perp [0, -1, 1]$
	$D_3 = -173.8 \text{ MHz}, \perp [0, -1, 1]$

Q-tensor:	nucleus ¹¹ B
	$Q_{\parallel} = -3.6 \text{ MHz}$
	$Q_{\perp} = +1.8 \text{ MHz}$
Diamond:	natural type IIb, p-type semiconducting
Model:	native boron-related center, copper-related center
References:	87L1, 87L2, 94B, 01B, 02B

Spectrum W38

Symmetry:	isotropic
Spin:	S = 1/2
g-tensor:	$(g_1 + g_2 + g_3)/3 \approx 2.0027$
Diamond:	type Ib
Remark:	bahaviour similar to interstitial sulphur (W31)
Model:	singly ionized oxygen
Reference:	92W3

Spectrum W40

Symmetry:	orthorhombic-I
Spin:	S = 1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0026$
D -tensor:	$D_{xx} = -1602 \text{ MHz}, [1, -1, 0] $
	$D_{yy} = -1522 \text{ MHz}, [0, 0, -1] $
	$D_{zz} = +3124 \text{ MHz}, [1, 1, 0] $
Diamond:	natural type IaB, after electron irradiation and anneal at 1500 ⁰ C
Model:	similarities with W26
Reference:	94W3

Spectrum W41

Symmetry:	monoclinic-I
Spin:	S = 1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0026$
D-tensor:	$D_{xx} = -693 \text{ MHz}, [+0.707, -0.707, 0.000] $
	$D_{yy} = -771 \text{ MHz}, [+0.624, +0.624, -0.469]$
	$D_{zz} = + 1464 \text{ MHz}, [+0.332, +0.332, +0.883]$
Diamond:	natural type IaB, after electron irradiation and anneal at 1500 ⁰ C
Reference:	94W3

Spectrum W42

Symmetry:	monoclinic-I
Spin:	S = 1
g-tensor:	$(g_1 + g_2 + g_3)/3 = 2.0026$
D-tensor:	$D_{\rm xx} = -430 \text{ MHz}, [+0.707, -0.707, 0.000] $
	$D_{yy} = -378 \text{ MHz}, [+0.081, +0.081, -0.993]$
	$D_{zz} = +808 \text{ MHz}, [+0.702, +0.702, +0.115] $

Diamond:	natural type IaB, after electron irradiation and anneal at 1500 $^{0}\mathrm{C}$
Model:	similarities with W28
Reference:	94W3

Spectrum W44

Symmetry:	orthorhombic-I
Spin:	S = 5/2
g-tensor:	g = 2.0025, almost isotropic
D-tensor:	$D_1 = 62 \text{ MHz}, [1, 1, 0] $
	$D_2 = -56$ MHz, $\ [1, -1, 0]$
	$D_3 = -6$ MHz, $\ [0, 0, 1]$
Diamond:	natural, type Ia
Model:	transition metal in 3d ⁵ configuration
References:	02B

Spectrum Mu

Symmetry:	isotropic
Spin:	S = 1/2
g-tensor:	g = -2.0034
A-tensor:	positive muon μ^+ , spin $I = 1/2$, 1 site
	A = 3711MHz
Diamond:	natural type Ia, IIa
Model:	normal muonium, tetrahedral interstitial site
References:	82H, 88O2

Spectrum Mu*

Symmetry:	axial, [[[1, 1, 1]]
Spin:	S = 1/2
g-tensor:	g = -1.9932
A-tensor:	positive muon μ^+ , spin $I = 1/2$, 1 site
	$A_{\parallel} = + 167.5 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = -392.0 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 99%, 2 sites
	$A_{\parallel} = 218 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 80 \text{ MHz}, \perp [1, 1, 1]$
Diamond:	synthetic, ¹³ C enriched to 99%
Model:	anomalous muonium, bond-centered site
References:	82H, 87S, 88O2, 93S

Spectrum β

Diamond:	type IaA and synthetic Ib, after neutron irradiation, anneals in at ≈ 500 ⁰ C, anneals out at ≈ 800
	0C
Remarks:	no further details given
Reference:	89N1

Spectrum CL1

50

Symmetry:	axial, [1, 1, 1]
Spin:	S = 1/2
g-tensor:	$g \approx 2.0028$
A-tensor:	(probably) nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%
	$A_{\parallel} = 124 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 104 \text{ MHz}, \perp [1, 1, 1]$
Diamond:	natural, champagne colored, Argyle
Remarks:	only one center orientation observed
Reference:	93H5

Spectrum KI1

g-tensor:	$g_{\rm eff} = 3.03.4$
Diamond:	synthetic powder
Model:	ferromagnetic inclusions
Remark:	g-values similar to G1
Reference:	95B2

Spectrum MA1 (Fig. 19)

Symmetry:	axial
Spin:	S = 1/2
g-tensor:	g = 2.0025
A-tensor:	nucleus ³¹ P, spin $I = 1/2$, abundance 100%
	$A_{\parallel} = 65 \text{ MHz}$
	$A_{\perp} = 55 \text{ MHz}$
Diamond:	synthetic crystalline diamond powder, phosphorus doped
Model:	phosphorus impurity, either isolated or in impurity complex
Remarks:	related spectra BI1 (Ref. 94Z3) and NIRIM-8 (Ref. 97I1)
References:	91S1, 91S2, 94Z3, 97I1, 02G1

Spectrum BI1

Symmetry:	isotropic
Spin:	S = 1/2
g-tensor:	g = 2.0023
A-tensor:	nucleus ³¹ P, spin $I = 1/2$, abundance 100%
	A = 75 MHz
Diamond:	CVD grown film, phosphorus implanted during deposition
Model:	substitutional phosphorus impurity
Remarks:	related spectra MA1 (Refs. 91S1, 91S2) and NIRIM-8 (Ref. 97I1)
Reference:	91\$1, 91\$2, 94Z3, 97I1, 00C2, 01C1

Spectrum AM1

Symmetry:	orthorhombic-I	
Spin:	S = 1	
g-tensor:	g = 2.00	
D-tensor:	$D_1 = +616 \text{ MHz}, [0, 1, 1] $	
	$D_2 = -110 \text{ MHz}, \parallel [1, 0, 0]$	
	$D_3 = -506 \text{ MHz}, [0, 1, -1] $	
Diamond:	natural, brown	
Remark:	photo-excited triplet state, observed by ODMR on 2.818 eV zero-phonon emission	
Model:	oxygen related (tentative)	
References:	92H2, 92W2	

Spectrum V⁰(⁵A₂)

Symmetry:	cubic
Spin:	<i>S</i> = 2
g-tensor:	g = 2.0033
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 4 nearest-neighbor sites
	$A_{\parallel} = 91.13 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 35.03 \text{ MHz}, \perp [1, 1, 1]$
A-tensor:	nucleus ¹³ C, spin $I = 1/2$, abundance 1.1%, 12 next-nearest-neighbor sites
	$A_{\parallel} = 12.01 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 8.36 \text{ MHz}, \perp [1, 1, 1]$
Diamond:	natural, type IaB
Remarks:	4 th -order spin-Hamiltonian parameter $a < 1$ MHz, ¹³ C hyperfine parameters measured by
	ENDOR
Model:	neutral vacancy, pointgroup symmetry $\overline{4}$ 3m, in photo-excited state ${}^{5}A_{2}$
References:	95T1, 95W1, 96T7, 97T2

Spectrum H2(ht)

Symmetry:	orthorhombic-I
Spin:	S = 1/2
g-tensor:	g = 2.00252
A-tensor:	nucleus ¹⁴ N, spin $I = 1$, abundance 99.63%, 2 sites
	$A_{\parallel} = 16.8 \text{ MHz}, \parallel [1, 1, 1]$
	$A_{\perp} = 3.6 \text{ MHz}, \perp [1, 1, 1]$
Diamond:	synthetic Ib, neutron irradiated, annealed at 1700 ⁰ C
Remarks:	related to and named after H2 optical center (Ref. 56C), observed after heat treatment, different
	from H2(H) hydrogen-related spectrum
Model:	negative NVN center
References:	56C, 93M3, 93N3, 94B, 94D, 94N4

Spectrum H1(H) (Figs. 20, 21)

Spin:	S = 1/2
g-tensor:	g = 2.0028
A-tensor:	nucleus ¹ H, spin $I = 1/2$, abundance $\approx 100\%$
	$A_{\parallel} = 27.5 \text{ MHz}$
	$A_{\perp} = -5.5 \text{ MHz}$
Diamond:	polycrystalline, grown by chemical vapor deposition (CVD)
Remarks:	hydrogen identified by (forbidden $\Delta m_{\rm I} = \pm 1$) electron-proton spin-flip transitions, ¹ H ENDOR
	observed (Ref. 98T1) on $g = 2.0028$ resonance: matrix ENDOR not related to unique H atom of
	H1(H) magnetic resonance center; not related to H1 optical spectrum
Model:	hydrogen on dangling carbon bond, axial [1, 1, 1], inside a vacancy, decoration of grain
	boundary, or in intergranular material
References:	93C, 93J, 93N1, 94H1, 95Z, 96K1, 96Z, 98M, 98T1, 99R, 00K2, 01W2

Spectrum H2(H)

Spin:	S = 1/2
g-tensor:	g = 2.0028
A-tensor:	nucleus ¹ H, spin $I = 1/2$, abundance $\approx 100\%$
	$A_{\parallel} = 17.9 \text{ MHz}$
	$A_{\perp} = -2.7 \text{ MHz}$
Diamond:	polycrystalline, grown by chemical vapor deposition (CVD)
Remarks:	not related to H2 optical (heat-treatment) center
Model:	hydrogen on dangling carbon bond, axial [1, 1, 1], in distorted region, on grain boundary or in
	intergranular material
References:	95Z, 96Z, 98M, 98T1

Spectrum GRE1

Symmetry:	isotropic
Spin:	S = 1/2
g-tensor:	g = 1.99902.0007
Diamond:	polycrystalline, grown by chemical vapor deposition (CVD), boron implanted
Model:	holes in impurity band
Reference:	95G1, 97C

4.1.3.3 g-values and linewidths of paramagnetic centers in CVD diamond

Paramagnetic centers in polycrystalline diamond grown by chemical vapor deposition (CVD). Resonances are generally interpreted as arising from dangling bonds on carbon atoms, from unsaturated bonds on grain boundaries or in intergranular (diamond-like or non-diamond) material. Further spectra observed in CVD films: GRE1, H1(H), H2(H), and P1 in averaged form (Refs. 91H, 91K, 93C, 94J, 94L2, 96G1, 96G2, 96K1, 96R1, 96V, 97G2, 97T1). The similar spectra TI1/N5 with isotropic g = 2.0027 are due to mechanical damage.

g-value	Linewidth [mT]	Reference
2.0015	2.3	96V
2.0019	0.5	92F
2.002	0.250.28	91K
2.002	1.31.4	91K
2.0024	0.190.33	93F3
2.0025	0.9	95P
2.0026	0.25	96C
2.0026	0.35	96V
2.0026	1.1	96V
2.0026	0.25	97C
2.0027	0.30.6	88W2
2.0027	0.36	92Z
2.0027	0.20.3	94J
2.0027		96K1
2.0027	0.250.4	96K2
2.0027		96R2
2.0027	broad	97W2
2.0028		91B
2.0028	0.4	92F
2.0028	0.30.5	93F1
2.0028	0.350.5	93F2
2.0028	0.24	93J
2.0028	0.76	93J
2.0028	0.350.45	94F
2.0028		94T3
2.0028		95T2
2.0028		95Z
2.0028	0.4	96R1
2.0028	0.180.26	96T2
2.0028	0.60.75	96T2
2.0028		96T4, 98T2
2.0028		97T1
2.0028		97T3
2.0028	0.22	98T1

54		4.1 Diamond (C)	[Ref. p.65
g-value	Linewidth [mT]	Reference	
2.0029	0.3	94G	
2.0029	0.4	94L2	
2.0029	0.8	96C	
2.0029	0.4	96G1	
2.0029	0.4	96G2	
2.0029	0.8	97C	
2.0029	0.4	97G2	
2.0029	narrow	97W2	
2.0030	0.30.4	95G1	
2.003	0.3	96I	
2.003	0.3	97\$1, 97\$2, 97\$3, 96\$1, 96\$2, 00\$1	
2.0033		91B	
2.0033	0.170.35	97F	
2.0035	0.8	94G	
2.0035	0.71.4	95R	
2.0035		96T4, 98T2	
2.0035		97T3	
2.0036		97W2	
2.0040		95T2	

Figures for 4.1.3

Fig. 1. Diamond. Atomic structure model for the N1 center. After Cox, et al. [92C1].

Fig. 2. Diamond. Atomic structure model for the N3 center. After van Wyk, et al. [92W1].

Diamond

Fig. 3. Diamond. Atomic structure models for the dinitrogen centers N4. After Baker and Newton [95B1].

Fig. 4. Diamond. EPR spectrum and atomic structure model for the NE1 center. Hyperfine structure due to nitrogen atom pair indicated by bar diagrams. After Nadolinny, et al. [97N].

Fig. 6. Diamond. EPR spectrum and atomic structure model for the NE3 center. Hyperfine structure due to nitrogen atoms indicated by bar diagrams. After Nadolinny, et al. [97N].

Diamond

Fig. 7. Diamond. EPR spectrum NIRIM-4 showing quartet hyperfine structure due to ${}^{11}B$ (nuclear spin l = 3/2) indicated by bar diagrams. After Isoya, et al. [9712].

Fig. 8. Diamond. Atomic structure model for the OK1 center. After Newton and Baker [89N2].

Fig. 9. Diamond. Atomic structure model for the Pl center. After Newton and Baker [89N2].

Fig. 10. Diamond. Carbon atom sites around the single substitutional nitrogen atom (filled circle) in the P1 center. The labelling a...g of shells of carbon sites correspond to the 13 C hyperfine interactions as given for spectrum P1. After Cox, et al. [94C].

Fig. 11. Diamond. Low-frequency part of the ${}^{13}C$ ENDOR spectrum of substitutional nitrogen (EPR spectrum P1). Shells of carbon atom sites are indicated. After Cox, et al. [94C].

Magnetic induction B [mT]

Diamond

Fig. 16. Diamond. Optically detected magnetic resonance (ODMR) spectrum of the nitrogenvacancy center (W15) at (a) zero magnetic field and (b) at B = 10 mT. Arrows indicate side-band structures due to interactions of W15 with the P1 center. After van Oort, et al. [9003].

Fig. 17. Diamond. Raman heterodyne detected EPR in the triplet ground state of the nitrogen-vacancy center (W15), in-phase (0°) or out-of-phase (90°) . After Holliday, et al. [90H].

For Fig. 18 see next page

Fig. 19. Diamond. EPR spectrum MA1 showing doublet hyperfine structure due to ${}^{31}P$ (nuclear spin $I = \frac{1}{2}$). After Samsonenko, et al. [91S1].

Fig. 18. Diamond. Raman heterodyne detected ENDOR of the nitrogenvacancy center, EPR spectrum W15. ENDOR is induced on the EPR transitions 1, 2 and 3 as indicated in the inset. After Manson, et al. [92M1].

Fig. 20. Diamond. EPR spectrum of H1(H) (a) showing its four components as decomposed in (b), (b): center doublet corresponds to the two allowed $\Delta m_{\rm I} = 0$ transitions, outer components correspond to the two forbidden transitions with $|\Delta m_{\rm I}| = 1$. After Holder, et al. [94H1].

Fig. 21. Diamond. Multifrequency EPR of the H1(H) center. The splitting of the two forbidden transitions $|\Delta m_{\rm I}| = 1$ (indicated by arrows) increases proportional to the frequency while their intensity decreases. Theoretical fits to the spectrum are shown by dashed lines. After Zhou, et al. [96Z].

References for 4.1.3

- 54G J. H. E. Griffiths, J. Owen, I. M. Ward: Nature 173 (1954) 439-440
- 55G J. H. E. Griffiths, J. Owen, I. M. Ward: Report of the Conference on Defects in Crystalline Solids, Physical Society, London, UK, 1955, pp. 81-87
- 56C C. D. Clark, R. W. Ditchburn, H. B. Dyer: Proc. Roy. Soc. 237 (1956) 75-89
- 59S1 W. V. Smith, P. P. Sorokin, I. L. Gelles, G. J. Lasher: Phys. Rev. 115 (1959) 1546-1552
- 59S2 W. V. Smith, I. L. Gelles, P. P. Sorokin: Phys. Rev. Lett. 2 (1959) 39-40
- 60S P. P. Sorokin, G. J. Lasher, I. L. Gelles: Phys. Rev. 118 (1960) 939-945
- 61W G. K. Walters, T. L. Estle: J. Appl. Phys. 32 (1961) 1854-1859
- 62F E. A. Faulkner, J. N. Lomer: Philos. Mag. 7 (1962) 1995-2002
- 62H C. M. Huggins, P. Cannon: Nature 194 (1962) 829-830
- 62L G. W. Ludwig, H. H. Woodbury: Solid State Phys. 13 (1962) 223-304
- 63B J. A. Baldwin, Jr.: Phys. Rev. Lett. 10 (1963) 220-222
- 63F E. A. Faulkner, E. W. J. Mitchell, P. W. Whippey: Nature 198 (1963) 981-982
- 63H E. A. Harris, J. Owen, C. Windsor: Bull. Am. Phys. Soc., Ser. II, 8 (1963) p. 252
- 64C C. D. Clark, I. Duncan, J. N. Lomer, P.W. Whippey: Proc. Brit. Ceram. Soc. 1 (1964) 85-92
- 64S E. V. Sobolev, G. B. Bokii, V. F. Dvoryankin, N. D. Samsonenko: Zh. Strukt. Khim. 5 (1964) 557-561; English translation: J. Struct. Chem. 5 (1964) 514-517
- 65D1 H. B. Dyer, F. A. Raal, L. du Preez, J. H. N. Loubser: Philos. Mag. 11 (1965) 763-774

66	References for 4.1.3
65D2	H. B. Dver, L. du Preez, J. Chem. Phys. 42 (1965) 1898-1906
65D3	I Duncan: Radiation Damage in Semiconductors, Dunod, Paris, 1965, pp. 135-142
65D4	G. S. Danil'chuk, L. N. Ganyuk, A. E. Koval'skii, P. P. Pogoretskii, G. A. Podzyarei, L. A. Shul'man: Teor. Eksp. Khim. 1 (1965) 367-372; English translation: Theor. Exp. Chem. 1 (1965) 237-240
65F	E. A. Faulkner, P. W. Whippey, R. C. Newman: Philos. Mag. 12 (1965) 413-414
65L1	J. H. N. Loubser, L. du Preez: Brit. J. Appl. Phys. 16 (1965) 457-462
65L2	J. H. N. Loubser, W. P. van Ryneveld, L. du Preez: Solid State Commun. 3 (1965) 307-309
65S1	N. D. Samsonenko: Fiz. Tverd. Tela 6 (1964) 3086-3088; English translation: Sov. Phys Solid State 6 (1965) 2460-2462
65S2	L. A. Shul'man, G. A. Podzyarei: Teor. Eksp. Khim. 1 (1965) 830-833; English translation: Theor. Exp. Chem. 1 (1965) 561-563
66B	H. J. Bower, M. C. R. Symons: Nature 210 (1966) 1037-1038
66C1	R. J. Cook, D. H. Whiffen: Proc. Roy. Soc. London,, Ser. A 295 (1966) 99-106
66C2 66L	J. W. Corbett: Solid State Phys. Supplement 7, Academic, New York, USA, 1966, pp. 1-410 J. H. N. Loubser, W. P. van Ryneveld: Nature 211 (1966) p. 517
66S	M. J. A. Smith, B. R. Angel, R. G. Emmons: Nature 210 (1966) 692-694
67B	M. D. Bell, W. J. Leivo: J. Appl. Phys. 38 (1967) 337-339
67L	J. H. N. Loubser, W. P. van Ryneveld: Brit. J. Appl. Phys. 18 (1967) 1029-1031
67S1	M. J. A. Smith, B. R. Angel: Philos. Mag. 15 (1967) 783-796
67S2	N. D. Samsonenko, E. V. Sobolev: Pis'ma Zh. Eksp. Teor. Fiz. 5 (1967) 304-307; English translation: JETP Lett. 54 (1967) 250-252
67S3	L. A. Shul'man, I. M. Zaritskii, G. A. Podzyarei: Fiz. Tverd. Tela 8 (1966) 2307-2312; English translation: Sov. Phys Solid State 8 (1967) 1842-1845
68P	G. A. Podzyarei, I. M. Zaritskii: Teor. Eksp. Khim. 4 (1968) 281-283; English translation: Theor. Exp. Chem. 4 (1968) 183-185
68S1	L. A. Shul'man, I. M. Zaritskii, K. A. Tikhonenko: Fiz. Tverd. Tela 9 (1967) 1964-1968; English translation: Sov. Phys Solid State 9 (1968) 1545-1548
69S1	M. Ya. Shcherbakova. E. V. Sobolev, N. D. Samsonenko, V. K. Aksenov: Fiz. Tverd. Tela 11 (1969) 1364-1367; English translation: Sov. Phys Solid State 11 (1969) 1104-1106
69S2	E. V. Sobolev, Yu. A. Litvin, N. D. Samsonenko, V. E. Il'in, S. V. Lenskaya, V. P. Butuzov: Fiz. Tverd. Tela 10 (1968) 2266-2268; English translation: Sov. Phys Solid State 10 (1969) 1789-1790
70B	Yu. A. Bratashevskii, Yu. A. Litvin, N. D. Samsonenko, E. V. Sobolev: Izv. Akad. Nauk SSSR, Neorg, Mater, 6 (1970) 368-369
70K	P. E. Klingsporn, M. D. Bell, W. J. Leivo: J. Appl. Phys. 41 (1970) 2977-2980
70L	J. H. N. Loubser, A. C. J. Wright: Diamond Conference Oxford, UK (1970), pp. 1.1-1.3
71C	R. M. Chrenko, H. M. Strong, R. E. Tuft: Philos, Mag. 23 (1971) 313-318
71K	Y M Kim G D. Watkins: J. Appl. Phys. 42 (1971) 722-724
711	I N Lomer A M A Wild Philos Mag 24 (1971) 273-278
7151	T. Szendrei: Solid State Commun. 9 (1971) 313-314
71S2	M. Ya. Shcherbakova, E. V. Soboleva, N. D. Samsonenko, V. A. Nadolinnyi, P. V. Schastnev, A. G. Semenov: Fiz. Tverd. Tela 13 (1971) 341-346; English translation: Sov. Phys Solid State 13 (1971) 281-285
71S3	M. I. Samoilovich, G. N. Bezrukov, V. P. Butuzov: Pis'ma Zh. Eksp. Teor. Fiz. 14 (1971) 551-553; English translation: JETP Lett. 14 (1971) 379-381
71 S 4	L. A. Shul'man, A. B. Brik, T. A. Nachal'naya, G. A. Podzyarei: Fiz. Tverd. Tela 12 (1970) 2852-2856; English translation: Sov. Phys Solid State 12 (1971) 2303-2306
72B1	J. C. Bourgoin, P. R. Brosious, Y. M. Kim, J. W. Corbett, R. M. Chrenko: Philos. Mag. 26 (1972) 1167-1178
72B2	Yu. A. Bratashevskii, F. N. Bukhan'ko, N. D. Samsonenko, O. Z. Shapiro: Fiz. Tverd. Tela 13 (1971) 2154-2156; English translation: Sov. Phys Solid State 13 (1972) 1809-1810
7281	M. Ya. Shcherbakova. E. V. Sobolev, V. A. Nadolinnyi: Dokl. Akad. Nauk SSSR 204 (1972) 851- 854; English Translation: Sov. Phys. Dokl. 17 (1972) 513-516

- 72S2 L. A. Shul'man, G. A. Podzyarei: Fiz. Tverd. Tela 14 (1972) 1770-1776: English translation: Sov. Phys. Solid State 14 (1972) 1521-1526
- 72W P. W. Whippey: Canadian J. Phys. 50 (1972) 803-812
- 73K Y. M. Kim; Y. H. Lee, P. Brosious, J. W. Corbett: Radiation Damage and Defects in Semiconductors, Institute of Physics, London, UK, 1973, pp. 202-209
- 73L1 J. N. Lomer, A. M. A. Wild: Radiat. Eff. 17 (1973) 37-44
- 73L2 J. H. N. Loubser, A. C. J. Wright: J. Phys. D: Appl. Phys. 6 (1973) 1129-1141
- 73L3 J. H. N. Loubser, A. C. J. Wright: Diamond Research, Suppl. to Ind. Diamond Rev. 1973, pp. 16-20
- 74B1 P. R. Brosious, J. W. Corbett, J. C. Bourgoin: Phys. Status Solidi (a) 21 (1974) 677-683
- 74B2 P. R. Brosious, Y. H. Lee, J. W. Corbett, L. J. Cheng: Phys. Status Solidi (a) 25 (1974) 541-549
- 74S1 F. V. Strnisa, J. W. Corbett: Cryst. Lattice Defects 5 (1974) 261-268
- 74S2 N. D. Samsonenko, G.B. Bokii, N. A. Shul'ga, V. I. Timchenko: Dokl. Akad. Nauk SSSR 218 (1974) 1336-1339; English translation: Sov. Phys.-Dokl. 19 (1975) 710-712
- 75B V. S. Bagdasaryan, E. A. Markosyan, M. A. Matosyan, O. S. Torosyan, E. G. Sharoyan: Fiz. Tverd. Tela 17 (1975) 1518-1520; English translation: Sov. Phys. - Solid State 17 (1975) p. 991
- 75K Yu. A. Klyuev, V. I. Nepsha, A. M. Naletov: Fiz. Tverd. Tela 16 (1974) 3259-3265; English translation: Sov. Phys. Solid State 16 (1975) 2118-2121
- 75L1 J. H. N. Loubser: Diamond Conference Cambridge, UK (1975) pp. 5.1-5.4
- J. N. Lomer, C. M. Welbourn: Diamond Conference Cambridge, UK (1975) pp. 9.1-9.3
- 75M J.-F. Morhange, R. Beserman, J. C. Bourgoin: Jpn. J. Appl. Phys. 14 (1975) 544-548
- 75S1 M. Ya. Shcherbakova, E. V. Sobolev, V. A. Nadolinnyi, V. K. Aksenov: Dokl. Akad. Nauk SSSR 225 (1975) 566-569; English translation: Sov. Phys. Dokl. 20 (1975) 725-728
- 75S2 P. V. Schastnev, R. N. Musin, M. Ya. Shcherbakova: Zh. Strukt. Khim. 16 (1975) 189-194; English translation: J. Struct. Chem. 16 (1975) 175-179
- 75S3 L. A. Shul'man, G. A. Podzyarei: Fiz. Tverd. Tela 16 (1974) 2112-2114; English translation: Sov. Phys. Solid State 16 (1975) 1377-1378
- 75W J. Walker: Diamond Conference Cambridge, UK (1975) pp. 8.1-8.2
- 76D G. Davies, M. F. Hamer: Proc. R. Soc. Lond. A 348 (1976) 285-298
- 76Z I. M. Zaritskii, V. Ya. Bratus', V. S. Vikhnin, A. S. Vishnevskii, A. A. Konchits, V. M. Ustintsev: Fiz. Tverd. Tela 18 (1976) 3226-3230; English translation: Sov. Phys. - Solid State 18 (1976) 1883-1885
- 77B P. R. Brosious, J. W. Corbett, J. C. Bourgoin: J. Phys. Paris 38 (1977) 459-462
- 77C C. D. Clark, E. W. J. Mitchell: Radiation Effects in Semiconductors, 1976, Institute of Physics, Bristol, UK, 1977, pp. 45-57
- 77L1 J. N. Lomer, C. M. Welbourn: Radiation Effects in Semiconductors, 1976, Institute of Physics, Bristol, UK, 1977, pp. 339-345
- 77L2 J. H. N. Loubser: Solid State Commun. 22 (1977) 767-770
- J. H. N. Loubser, J. A. van Wyk: Diamond Research 1977, Suppl. to Ind. Diamond Rev., pp. 11-14
- J. H. N. Loubser: Diamond Conference Reading, UK (1977) pp. 7.1-7.6
- 77M D. A. C. McNeil, M. C. R. Symons: J. Phys. Chem. Solids 38 (1977) 397-400
- J. P. F. Sellschop, J. H. N. Loubser, H. J. Annegarn, R. J. Keddy, C. C. P. Madiba, M. J. Renan: Diamond Conference Reading, UK (1977) pp. 3.1-3.3
- 77W C. M. Welbourn, G. S. Woods: Diamond Conference Reading, UK (1977) pp. 8.1-8.2
- 78B V. K. Bezobchuk, A. B. Brik, I. V. Matyash, Yu. V. Fedotov: Fiz. Tverd. Tela 20 (1978) 306-307; English translation: Sov. Phys. - Solid State 20 (1978) 178-179
- 78L1 Y. H. Lee, P. R. Brosious, J. W. Corbett: Phys. Status Solidi (a) 50 (1978) 237-242
- 78L2 J. H. N. Loubser, J. A. van Wyk: Rep. Progr. Phys. 41 (1978) 1201-1248
- 78L3 J. N. Lomer, C. M. Welbourn: Philos. Mag. A 37 (1978) 639-648
- 78L4 J. H. N. Loubser, J. A. van Wyk, C. M. Welbourn: Diamond Conference Oxford, UK (1978), pp. 17.1-17.2
- 78N V. A. Nadolinnyi, M. Ya. Shcherbakova, E. V. Sobolev: Zh. Strukt. Khim. 19 (1978) 377-378; English translation: J. Struct. Chem. 19 (1978) 327-328

68	References for 4.1.3
78S1	M. Ya. Shcherbakova, V. A. Nadolinnyi, E. V. Sobolev: Zh. Strukt. Khim. 19 (1978) 305-314; English translation: J. Struct. Chem. USSR 19 (1978) 261-269
78S2	N. D. Samsonenko, V. I. Timchenko, Yu. A. Litvin, G. B. Bokii: Dokl. Akad. Nauk SSSR 242 (1978) 826-828; English translation: Sov. PhysDokl. 23 (1978) 762-764
78W	C. M. Welbourn: Solid State Commun. 26 (1978) 255-260
79A	C. A. J. Ammerlaan, E. A. Burgemeister: Diamond Conference Cambridge, UK (1979), pp. 12.1-12.3
79C	C. D. Clark, E. W. J. Mitchell, B. J. Parsons: The Properties of Diamond, J. E. Field (ed.), Academic Press, London, UK, 1979, pp. 23-77
79H1	B. Henderson: Diamond Conference Cambridge, UK (1979), pp. 13.1-13.2
79H2	M. J. R. Hoch, A. R. Day: Solid State Commun. 30 (1979) 211-213
79L1	J. H. N. Loubser, J. A. van Wyk: Diamond Conference Cambridge, UK (1979), pp. 10.1-10.2
79L2	J. N. Lomer, D. Marriott: Defects and Radiation Effects in Semiconductors 1978, Institute of Physics, Bristol, UK, 1979, pp. 341-346
79S	N. D. Samsonenko, G. V. Zhmykhov, V. Sh. Zon, V. K. Aksenov: Zh. Strukt. Khim. 20 (1979) 1116- 1118; English translation: J. Struct. Chem. 20 (1979) 951-953
79T	A. Talmi, R. Beserman, G. Braunstein, T. Bernstein, R. Kalish: Defects and Radiation Effects in Semiconductors 1978, Institute of Physics, Bristol, UK, 1979, pp. 347-351
79V	V. S. Vavilov: Defects and Radiation Effects in Semiconductors 1978, Institute of Physics, Bristol, UK, 1979, pp. 74-81
79W	J. A. van Wyk, J. H. N. Loubser: Diamond Conference Cambridge, UK (1979), pp. 11.1-11.2
80A	C. A. J. Ammerlaan, E. A. Burgemeister: Ind. Diamond Rev. 40 (1980) 128-132
80B	R. C. Barklie, J. Guven, B. Henderson: Diamond Conference Bristol, UK (1980), p. 22.1
80F	I. T. Flint, J. N. Lomer: Diamond Conference Bristol, UK (1980), pp. 44.1-44.2
80W	J. A. van Wyk, J. H. N. Loubser: Diamond Conference Bristol, UK (1980), pp. 41.1-41.3
81A1	C. A. J. Ammerlaan: Defects and Radiation Effects in Semiconductors, 1980, Institute of Physics,
	Bristol, UK, 1981, pp. 81-94
81A2	C. A. J. Ammeriaan, E. A. Burgemeister: Phys. Rev. Lett. 47 (1981) 954-957
81A3	C. A. J. Ammeriaan: Diamond Conference Reading, UK (1981), pp. 12.1-12.2
81B 91E	K. C. Barkile, J. Guven, J. Fliys, C. Solid State Fliys, 14 (1981) 5021-5051
81F 01I	I. I. FIIII, J. N. Loiner. Diamond Conference Reading, UK (1981), pp. 14.1-14.2
81L	J. H. N. LOUDSER, J. A. Van Wyk. Diamond Conference Reading, UK (1981), pp. 15.1-15.0
81 W	J. A. Van Wyk, J. H. N. Loudser. Diamond Conference Reading, OK (1981), pp. 11.1-11.4
82C	A. I. Collins, F. M. Spear, J. Fliys, D. Appl. Fliys, 15 (1962) E165-E167
02F1 02E2	I. T. Flint, M. A. Lea-Wilson, J. N. Londer. Diamond Conference Oxford, UK (1962), p. 44.1
02F2 92F2	I. T. Flint, J. N. Lomer, Diamond Conference Oxford, UK (1982), pp. 45.1-45.2
02FJ 01U	E Holzschub W Kündig D E Meier B D Patterson I P E Sellschon M C Stemmet H Annel:
0211	Phys Rev A 25 (1982) 1272-1286
82I 1	L H N Loubser: Diamond Conference Oxford, UK (1982), pp. 43.1-43.6
8212	I H N Loubser I A van Wyk C M Welbourn I Phys. C: Solid State Phys. 15 (1982) 6031-6036
82L2	I A van Wyk I H N Loubser: Diamond Conference Oxford UK (1982) pp 42 1-42 4
82W2	I A van Wyk, J. Phys. C. Solid State Phys. 15 (1982) L981-L983
834	C A I Ammerlaan R van Kemp: Diamond Conference Cambridge, UK (1983), pp. 38.1-38.6
83F1	L T Flint I N Lomer Physica 116B (1983) 183-186
83F2	L F Field: Report Cavendish Laboratory, University of Cambridge, UK
83L1	I H N Loubser I A van Wyk: Diamond Conference Cambridge, UK (1983), p. P1.1
83L2	M. A. Lea-Wilson, J. N. Lomer: Diamond Conference Cambridge, UK (1983), pp. P4.1-P4.3
83W	J. A. van Wyk, J. H. N. Loubser: J. Phys. C: Solid State Phys. 16 (1983) 1501-1506
84H	R. T. Harley, M. J. Henderson, R. M. Macfarlane: J. Phys. C: Solid State Phys. 17 (1984) L233-L236
84L1	M. A. Lea-Wilson, J. N. Lomer: Diamond Conference Bristol, UK (1984), pp. 19.1-19.3
84L2	M. A. Lea-Wilson, J. N. Lomer: Diamond Conference Bristol, UK (1984), pp. P8.1-P8.2
84L3	M. A. Lea-Wilson, J. N. Lomer: Diamond Conference Bristol, UK (1984), pp. P9.1-P9.2

84W	J. A. van Wyk, J. H. N. Loubser: Diamond Conference Bristol, UK (1984), p. 18.1
85A	C. A. J. Ammerlaan, R. van Kemp: J. Phys. C: Solid State Phys. 18 (1985) 2623-2629
85L1	M. A. Lea-Wilson, J. N. Lomer: Diamond Conference Reading, UK (1985), pp. P5.1-P5.5
85L2	J. H. N. Loubser, J. A. van Wyk: Microscopic Identification of Electronic Defects in Semiconductors,
	N. M. Johnson, S. G. Bishop G. D. Watkins (eds.), MRS, Pittsburgh, Pennsylvania, USA, 1985, pp.
	587-591
85W	I A van Wyk, J. H. N. Loubser: Diamond Conference Reading, UK (1985), pp. 24.1-24.2
861	M A Lea-Wilson I N Lomer: Diamond Conference Royal Holloway & Bedford New College, UK
OOL	(1986) nn 39 1-39 9
86W1	L A van Wyk L H N Loubser: Mater Sci Forum 10-12 (1986) 923-927
00 W 1 04 W 7	J. A. van Wyk, J. H. N. Loubser: Diamond Conference Royal Holloway & Bedford New College, UK
00 W 2	J. A. Vali Wyk, J. H. N. Louiser. Diamona comercine Royal Honoway a Dealera Fiew Conege, eff
071 1	(1760), pp. 56.1-56.5 L.H.N. Louhser, L.A. van Wuk: Diamond Conference Oxford UK (1987), pp. P11 1-P11 2
8/L1	J. H. N. Loubser, J. A. van Wyk. Diamond Complete Conford, OK (1907), pp. 111.1-111.2
8/L2	J. R. N. LOUDSEI, J. A. Vali Wyk. S. All. J. Hiys. 10 (1907) 103-100
8/K	N. K. S. Reddy, N. D. Malisoli, E. R. Madsz, J. Edinin, 50 (1967) 40-47
8/5	V. M. Samoliov: Pis hia Zh. Eksp. 1col. Fiz. 45 (1987) 254-250, English translation. J. Ekp. 11col.
0711	Phys. 45 (1967) 292-295
8/W	J. A. Van Wyk, G. S. Woods. Diamond Conference Oxford, OK (1967), pp.10.1-10.0
88B	J. M. Baker, J. H. N. Loudser, M. E. Newton. Diamond Conference Cambridge, OK (1968), pp. 41.1-
00111	41.2 M. J. D. Hach, Diamond Conference Combridge IIK (1988) pp. 30 1 30 6
8811	M. J. K. Hoch. Diamond Conference Cambridge, OK (1966), pp. 59.1-59.0
88H2	M. Hagiwara, T. Oeniula, T. Cinida, W. Date, J. Filys. Soc. Jpn. 57 (1988) 741-745
88L1	J. H. N. Loudser, private communication J. H. N. Loudser
88L2	M. A. Lea-Wilsoll. Dociol litesis, Oliversity of Reading, OR, pp. 1-512
001/1	UK (1099) pp 25.1.25.5
0001	CK (1960), pp. 23.1-23.3 E. van Oort, N. B. Manson, M. Glasheek: I. Phys. C: Solid State Phys. 21 (1988) 4385-4391
8801	W Odermett Hn Baumeler H Keller W Kündig B D Patterson I W Schneider I P F
8802	Sollschop M C Stemmet S Connell D P Spencer: Phys Rev B 38 (1988) 4388-4393
0011/1	L A van Wyk: Diamond Conference Cambridge LIK (1988) np. 38 1-38 3
00 1 1	J. A. vali wyk. Diamond Complete Cambridge, OK (1966), pp. 36.1 50.5
00 W 2 20N1	V Nicida V Mita K Mori S Okuda S Sato S Yazu M Nakagawa M Okada: Mater Sci Forum
09111	1.1418104, 1.141014, 1.141014, 5.16100, 5.16100, 5.17020, 5.17020, 5.1700000, 5.1700000, 5.1700000, 5.170000000, 5.17000000000000000000000000000000000000
80N/2	M E Newton I M Baker: I Phys Condens, Matter 1 (1989) 10549-10561
80N3	M. E. Newton, J. M. Baker: J. Phys.: Condens. Matter 1 (1989) 9801-9803
80NI/	M. E. Newton, J. M. Baker: Diamond Conference Bristol IJK (1989), np. 34 1-34 3
890	E van Oort M Glasbeek Phys Rev B 40 (1989) 6509-6517
89W	L A van Wyk: Diamond Conference Bristol, UK (1989), pp. P5.1-P5.5
90F	D P Erchak R B Gelfand N M Penina, V. F. Stelmakh, V. P. Tolstykh, A. G. Ulvashin, V. S.
	Varichenko, A. M. Zaitsey: Phys. Status Solidi (a) 121 (1990) 63-72
90F1	P T H Fisk X -F He, K, Holliday, N, B, Manson: J, Lumin, 45 (1990) 26-28
90F2	M. Furusawa, M. Ikeva: I. Phys. Soc. Jpn. 59 (1990) $2340-2343$
90H	K Holliday X -F He P T H Fisk N B Manson: Opt. Lett. 15 (1990) 983-985
9011	L Isova H Kanda Y Uchida: Phys. Rev. B 42 (1990) 9843-9852
9012	I Isoya H Kanda I R Norris I Tang M K Bowman: Phys. Rev. B 41 (1990) 3905-3913
9013	I Isoya C P Lin M K Bowman J. R. Norris, S. Yazu, S. Sato: Science and Technology of New
/01/	Diamond S. Saito, O. Fukunaga M. Yoshikawa (eds.) KTK Scientific Publishers/Terra Scientific
	Publishing Company, 1990, pp. 357-361
9014	J. Isova: New Diamond, M. Yoshikawa (ed.), published by Japan New Diamond Forum, Ohmsha Ltd.
	Tokyo, Japan, 1990, pp. 63-66
90M	N. B. Manson, XF. He, P. T. H. Fisk: Opt. Lett. 15 (1990) 1094-1096
9001	E. van Oort, M. Glasbeek: Chem. Phys. Lett. 168 (1990) 529-532

9001 E. van Oort, M. Glasbeek: Chem. Phys. Lett. 168 (1990) 529-532
9002 E. van Oort, M. Glasbeek: Chem. Phys. 143 (1990) 131-140

70	References for 4.1.3
9003	E. van Oort, P. Stroomer, M. Glasbeek: Phys. Rev. B 42 (1990) 8605-8608
90S	B. P. Singh, S. K. Gupta, U. Dhawan, K. Lal: J. Mater. Sci. 25 (1990) 1487-1490
90W	G. S. Woods, J. A. van Wyk, A. T. Collins : Philos. Mag. B 62 (1990) 589-595
91B	J. M. Baker, J. E. Butler, A. Cox, H. G. Maguire: Diamond Conference Oxford, UK (1991), pp. P14.1-P14.2
91G	M. Glasbeek, E. van Oort: Radiat. Eff. Defects Solids 119-121 (1991) 301-306
91H	M. Hoinkis, E. R. Weber, M. I. Landstrass, M. A. Plano, S. Han, D. R. Kania: Appl. Phys. Lett. 59 (1991) 1870-1871
91K	T. A. Karpukhina, L. L. Bouilov, V. F. Chuvaev: Surface and Coatings Technology 47 (1991) 538- 544 (Proc. 1st European Conf. Diamond and Diamond-like Carbon Coatings; A. Matthews, P. K. Bachmann (eds.), Crans-Montana, Switzerland, 17-19 September 1990)
91N1	M. E. Newton, J. M. Baker: J. Phys.: Condens. Matter 3 (1991) 3591-3603
91N2	M. E. Newton, J. M. Baker: J. Phys.: Condens. Matter 3 (1991) 3605-3616
910	E. van Oort, B. van der Kamp, R. Sitters, M. Glasbeek: J. Lumin. 48-49 (1991) 803-806
91R	D. A. Redman, S. Brown, R. H. Sands, S. C. Rand: Phys. Rev. Lett. 67 (1991) 3420-3423
91 S 1	N. D. Samsonenko, V. V. Tokiy, S. V. Gorban, V. I. Timchenko: Surface and Coatings Technology 47 (1991) 618-622 (Proc. 1st European Conf. Diamond and Diamond-like Carbon Coatings; A. Matthews, P. K. Bachmann (eds.), Crans-Montana, Switzerland, 17-19 September 1990)
91S2	N. D. Samsonenko, V. V. Tokii, S. V. Gorban': Fiz. Tverd. Tela 33 (1991) 2496-2498; English translation: Sov. Phys. Solid State 33 (1991) 1409-1410
91W	J. A. van Wyk: Diamond Conference Oxford, UK (1991), pp. 43.1-43.2
92B	J. M. Baker, M. E. Newton: Diamond Conference Cambridge, UK (1992), pp. 37.1-37.4
92C1	A. Cox, M. E. Newton, J. M. Baker: J. Phys.: Condens. Matter 4 (1992) 8119-8130
92C2	A. Cox, M. E. Newton, J. M. Baker: Diamond Conference Cambridge, UK (1992), pp. 38.1-38.2
92C3	A. Cox, M. E. Newton, J. M. Baker: Diamond Conference Cambridge, UK (1992), pp. P20.1-P20.3
92F	M. Fanciulli, T. D. Moustakas: Diamond Relat. Mater. 1 (1992) 773-775
92H1	XF. He, P. T. H. Fisk, N. B. Manson: J. Appl. Phys. 72 (1992) 211-217
97H2	I. Hiromitsu, J. Westra, M. Glasbeek: Phys. Rev. B 46 (1992) 5303-5310
92H3	I Hiromitsu, J. Westra, M. Glasbeek: Phys. Rev. B 46 (1992) 10600-10612
92I	J. Isoya, H. Kanda, Y. Uchida, S. C. Lawson, S. Yamasaki, H. Itoh, Y. Morita: Phys. Rev. B 45 (1992) 1436-1439
92M1	N. B. Manson, P. T. H. Fisk, XF. He: Appl. Magn. Reson. 3 (1992) 999-1019
97M2	N B Manson, XF. He, P. T. H. Fisk; J. Lumin, 53 (1992) 49-54
920	E van Oort M Glasbeek: J. Lumin, 53 (1992) 88-91
02R1	D. Redman S. Brown S. C. Rand: J. Opt. Soc. Am. B 9 (1992) 768-774
0202	D A Redman O Shu S W Brown A Lenef Y Lin I Whitaker S. C. Rand, S. Satoh, K. Tsuji, S.
92N2	Yazu: Wide Band Gap Semiconductors, T. D. Moustakas, J. I. Pankove, Y. Hamakawa (eds.), MRS, Pittsburgh, Pennsylvania, USA, 1992, pp. 127-132
92S	J. P. F. Sellschop: The properties of natural and synthetic diamond, J. E. Field (ed.), Academic Press, San Diego, USA, 1992, pp. 81-179
92W1	J. A. van Wyk, J. H. N. Loubser, M. E. Newton, J. M. Baker: J. Phys.: Condens. Matter 4 (1992) 2651-2662
92W2	J. Westra, R. Sitters, M. Glasbeek: Phys. Rev. B 45 (1992) 5699-5702
92W3	J. A. van Wyk, N. I. Manyala, J. D. Comins: Diamond Conference Cambridge, UK (1992), pp. 36.1- 36.2
927	W. Zhang, F. Zhang, O. Wu, G. Chen: Mater. Lett. 15 (1992) 292-297
93C	A. Cox, M. E. Newton, J. M. Baker: Diamond Conference Bristol, UK (1993), p. 21.1
93F1	M Fanciulli, T. D. Moustakas: Physica B 185 (1993) 228-233
93F7	M Fanciulli T D Moustakas: Phys. Rev. B 48 (1993) 14982-14988
03E3	K Fabisiak M Maar-Sturm E Blank: Diamond Relat Mater 2 (1993) 722-727
991-9 02U1	$\mathbf{X} \in \mathbf{H}_{\mathbf{A}}$ N B Manson P T H Fisk: Phys Rev R 47 (1993) 8809-8815
7301 02U2	$X = H_{e} = N = Manson P T H = Fisk: Phys. Rev. B 47 (1993) 8816-8827$
//112	$(1, 1, 10, 1) \rightarrow (1, 10, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$

References for 4.1.3

.

 H. Hanzawa, H. Nishikori, Y. Nisida, S. Sato, T. Nakashima, S. Sasaki, N. Miura: Physica B 184 (1993) 137-140 XF. He, P. T. H. Fisk, N. B. Manson: J. Opt. Soc. Am. B 10 (1993) 913-917 D. R. Hutton, G. J. Troup: Aust. J. Phys. 46 (1993) 663-666 H. Jia, J. Shinar, D. P. Lang, M. Pruski: Phys. Rev. B 48 (1993) 17595-17598 I. Kiflawi, A. E. Mayer, P. M. Spear, J. A. van Wyk, G. S. Woods: Diamond Conference Bristol, UK (1993), pp. 7.1-7.4 A. Mainwood, J. E. Lowther, J. A. van Wyk: J. Phys.: Condens. Matter 5 (1993) 7929-7934 A. Mainwood, J. E. Lowther, J. van Wyk: Diamond Conference Bristol, UK (1993), p. 43.1 Y. Mita, Y. Ohno, Y. Adachi, H. Kanehara, Y. Nisida, T. Nakashima: Diamond Relat. Mater. 2 (1993) 768-772
 XF. He, P. T. H. Fisk, N. B. Manson: J. Opt. Soc. Am. B 10 (1993) 913-917 D. R. Hutton, G. J. Troup: Aust. J. Phys. 46 (1993) 663-666 H. Jia, J. Shinar, D. P. Lang, M. Pruski: Phys. Rev. B 48 (1993) 17595-17598 I. Kiflawi, A. E. Mayer, P. M. Spear, J. A. van Wyk, G. S. Woods: Diamond Conference Bristol, UK (1993), pp. 7.1-7.4 A. Mainwood, J. E. Lowther, J. A. van Wyk: J. Phys.: Condens. Matter 5 (1993) 7929-7934 A. Mainwood, J. E. Lowther, J. van Wyk: Diamond Conference Bristol, UK (1993), p. 43.1 Y. Mita, Y. Ohno, Y. Adachi, H. Kanehara, Y. Nisida, T. Nakashima: Diamond Relat. Mater. 2 (1993) 768-772
 D. R. Hutton, G. J. Troup: Aust. J. Phys. 46 (1993) 663-666 H. Jia, J. Shinar, D. P. Lang, M. Pruski: Phys. Rev. B 48 (1993) 17595-17598 I. Kiflawi, A. E. Mayer, P. M. Spear, J. A. van Wyk, G. S. Woods: Diamond Conference Bristol, UK (1993), pp. 7.1-7.4 A. Mainwood, J. E. Lowther, J. A. van Wyk: J. Phys.: Condens. Matter 5 (1993) 7929-7934 A. Mainwood, J. E. Lowther, J. van Wyk: Diamond Conference Bristol, UK (1993), p. 43.1 Y. Mita, Y. Ohno, Y. Adachi, H. Kanehara, Y. Nisida, T. Nakashima: Diamond Relat. Mater. 2 (1993) 768-772
 H. Jia, J. Shinar, D. P. Lang, M. Pruski: Phys. Rev. B 48 (1993) 17595-17598 I. Kiflawi, A. E. Mayer, P. M. Spear, J. A. van Wyk, G. S. Woods: Diamond Conference Bristol, UK (1993), pp. 7.1-7.4 A. Mainwood, J. E. Lowther, J. A. van Wyk: J. Phys.: Condens. Matter 5 (1993) 7929-7934 A. Mainwood, J. E. Lowther, J. van Wyk: Diamond Conference Bristol, UK (1993), p. 43.1 Y. Mita, Y. Ohno, Y. Adachi, H. Kanehara, Y. Nisida, T. Nakashima: Diamond Relat. Mater. 2 (1993) 768-772
 I. Kiflawi, A. E. Mayer, P. M. Spear, J. A. van Wyk, G. S. Woods: Diamond Conference Bristol, UK (1993), pp. 7.1-7.4 A. Mainwood, J. E. Lowther, J. A. van Wyk: J. Phys.: Condens. Matter 5 (1993) 7929-7934 A. Mainwood, J. E. Lowther, J. van Wyk: Diamond Conference Bristol, UK (1993), p. 43.1 Y. Mita, Y. Ohno, Y. Adachi, H. Kanehara, Y. Nisida, T. Nakashima: Diamond Relat. Mater. 2 (1993) 768-772
 A. Mainwood, J. E. Lowther, J. A. van Wyk: J. Phys.: Condens. Matter 5 (1993) 7929-7934 A. Mainwood, J. E. Lowther, J. van Wyk: Diamond Conference Bristol, UK (1993), p. 43.1 Y. Mita, Y. Ohno, Y. Adachi, H. Kanehara, Y. Nisida, T. Nakashima: Diamond Relat. Mater. 2 (1993) 768-772
 A. Mainwood, J. E. Lowther, J. van Wyk: Diamond Conference Bristol, UK (1993), p. 43.1 Y. Mita, Y. Ohno, Y. Adachi, H. Kanehara, Y. Nisida, T. Nakashima: Diamond Relat. Mater. 2 (1993) 768-772 M. E. Nauten, A. Cox, L.M. Beker: Diamond Conference Bristol, UK (1993), p. P12.1
Y. Mita, Y. Ohno, Y. Adachi, H. Kanehara, Y. Nisida, T. Nakashima: Diamond Relat. Mater. 2 (1993) 768-772 M. F. Nauton, A. Cax, J. M. Palvar, Diamond Conference Bristol, JJK (1993), p. P12 1
M. F. Newton, A. Cox, J. M. Baker, Diamond Conference Brittel, IJK (1993), p. B12.1
M. E. Newlon, A. Cox, J. M. Baker. Diamond Conference Difficit, UK (1995), p. 1 12.1
V. A. Nadolinny, A. P. Yelisseyev: Diamond Relat. Mater. 3 (1993) 17-21
Y. Nisida, Y. Yamada, S. Uchiyama, Y. Mita, T. Nakashima, S. Sato: Proc. Int. Conf. Defects in Insulating Materials, World Scientific, Singapore, 1993, pp. 499-501
J. W. Schneider, R. F. Kiefl, K. H. Chow, S. Johnston, J. Sonier, T. L. Estle, B. Hitti, R. L. Lichti, S.
H. Connell, J. P. F. Sellschop, C. G. Smallman, T. R. Anthony, W. F. Banholzer: Phys. Rev. Lett. 71 (1993) 557-560
O. D. Tucker, M. E. Newton, J. M. Baker, J. A. van Wyk: Diamond Conference Bristol, UK (1993), pp. 201-203
O. D. Tucker, M. E. Newton, J. M. Baker, T. R. Anthony: Diamond Conference Bristol, UK (1993), p. P10.1
J. A. van Wvk, J. H. N. Loubser: J. Phys.: Condens. Matter 5 (1993) 3019-3026
J. A. van Wyk, G. S. Woods: Diamond Conference Bristol, UK (1993), pp. 22.1-22.3
J. M. Baker, M. E. Newton: Appl. Magn. Res. 7 (1994) 209-235
A. Cox, M. E. Newton, J. M. Baker: J. Phys.: Condens. Matter 6 (1994) 551-563
G. Davies, N. B. Manson: Properties and Growth of Diamond (INSPEC Data Review Series, No. 9),
G. Davies (ed.), Institution of Electrical Engineers, London, UK, 1994, pp. 173-176
M. Fanciulli, T. D. Moustakas: Mater. Sci. Forum 143-147 (1994) 35-40
E. Gheeraert, F. Fontaine, A. Deneuville, Y. L. Khong, A. T. Collins: Diamond Relat. Mater. 3 (1994) 737-740
S. L. Holder, L. G. Rowan, J. J. Krebs: Appl. Phys. Lett. 64 (1994) 1091-1093
D. M. Hofmann, M. Ludwig, P. Christmann, D. Volm, B. K. Meyer, L. Pereira, L. Santos E. Pereira: Phys. Rev. B 50 (1994) 17618-17620
J. Isoya, H. Kanda, Y. Morita: Advances in New Diamond Science and Technology (Proc. Fourth Int.
Conf. New Diamond Science and Technology), S. Saito, N. Fujimori, O. Fukunaga, M. Kamo, K. Kobashi, M. Yoshikawa (eds.) MYLL Tokyo, 1994, pp. 351-354
S Jin M Fanciulli, T. D. Moustakas, L. H. Robins: Diamond Relat, Mater, 3 (1994) 878-882
I E Lowther, J. A. van Wyk: Phys. Rev. B 49 (1994) 11010-11015
P. B. Lukins, J. Khachan: Appl. Phys. Lett. 65 (1994) 3320-3322
J. E. Lowther, A. Mainwood: Diamond Conference Reading, UK (1994), pp. P16.1-P16.4
J. E. Lowther, A. Mainwood: J. Phys.: Condens. Matter 6 (1994) 6721-6724
M. A. Lea-Wilson, J. N. Lomer, J. A. van Wyk: Philos. Mag. B 70 (1994) 101-107
R. M. Mineyeva, A. V. Speranskiy, S. V. Titkov, L. V. Bershov: Dokl. Ross. Akad. Nauk 334 (1994) 755-758: English translation: Dokl. Akad. Nauk SSSR Ser. A 39 (1994) 143-147
M. H. Nazaré: Properties and Growth of Diamond (INSPEC Data Review Series, No. 9), G. Davies
(ed.), Institution of Electrical Engineers, London, UK, 1994, pp. 85-87
M. H. Nazaré: Properties and Growth of Diamond (INSPEC Data Review Series, No. 9), G. Davies (ed.), Institution of Electrical Engineers, London, UK, 1994, pp. 129-132
M. E. Newton: Properties and Growth of Diamond (INSPEC Data Review Series, No. 9), G. Davies (ed.), Institution of Electrical Engineers, London, UK, 1994, pp. 153-158

71

72	References for 4.1.3
94N4	M. E. Newton: Properties and Growth of Diamond (INSPEC Data Review Series, No. 9), G. Davies (ed.), Institution of Electrical Engineers, London, UK, 1994, pp. 166-172
94N5	V. Nadolinny, A. Yelisseyev: Diamond Relat. Mater. 3 (1994) 1196-1200
94N6	T. A. Nachal'naya, V. D. Andreyev, E. V. Gabrusenok: Diamond Relat. Mater. 3 (1994) 1325-1328
94P1	E. Pereira, L. Santos, L. Pereira, D. M. Hofmann, W. Stadler, B. K. Meyer: Mater. Sci. Forum 143- 147 (1994) 57-61
94P2	D. W. Palmer: Properties and Growth of Diamond (INSPEC Data Review Series, No. 9), G. Davies (ed.). Institution of Electrical Engineers, London, UK, 1994, pp. 143-152
94P3	E. Pereira, L. Santos, L. Pereira, D. M. Hofmann, P. Christmann, W. Stadler, B. K. Meyer: Diamond Relat. Mater. 4 (1994) 53-58
94T1	O. D. Tucker, M. E. Newton, J. M. Baker: Phys. Rev. B 50 (1994) 15586-15596
94T2	O. D. Tucker, M. E. Newton, J. M. Baker: Diamond Conference Reading, UK (1994), pp. 33.1-33.2
94T3	D. F. Talbot-Ponsonby, M. E. Newton, J. M. Baker: Diamond Conference Reading, UK (1994), p. P17.1
94W1	J. A. van Wyk: J. Phys.: Condens. Matter 6 (1994) 801-810
94W2	G. S. Woods: Properties and Growth of Diamond (INSPEC Data Review Series, No. 9), G. Davies (ed.), Institution of Electrical Engineers, London, UK, 1994, pp. 92-93
94W3	J. A. van Wyk, G. S. Woods: Diamond Conference Reading, UK (1994), pp. 34.1-34.3
94Z1	Shigang Zhang, S. C. Ke, M. E. Zvanut, H. T. Tohver, Y. K. Vohra: Phys. Rev. B 49 (1994) 15392- 15395
94Z2	Shigang Zhang, M. E. Zvanut, Y. K. Vohra, S. S. Vagarali: Appl. Phys. Lett. 65 (1994) 2951-2953
94Z3	M. E. Zvanut, W. E. Carlos, J. A. Freitas, Jr., K. D. Jamison, R. P. Hellmer: Appl. Phys. Lett. 65 (1994) 2287-2289
95B1	J. M. Baker, M. E. Newton: Appl. Magn. Res. 8 (1995) 207-228
95B2	G. P. Bogatyreva, G. A. Bazilii, E. R. Zusmanov, V. M. Maevskii, A. B. Roitsin: Zh. Tekh. Fiz. 65 (1995) 55-62; English translation: Tech. Phys. 40 (1995) 146-149
95G1	P. Gonon, E. Gheeraert, A. Deneuville, F. Fontaine, L. Abello, G. Lucazeau: J. Appl. Phys. 78 (1995) 7059-7062
95G2	J. Goss, A. Resende, R. Jones, S. Öberg, P. R. Briddon: Mater. Sci. Forum 196-201 (1995) 67-71
95H	D. M. Hofmann, P. Christmann, D. Volm, K. Pressel, L. Pereira, L. Santos, E. Pereira: Mater. Sci. Forum 196-201 (1995) 79-83
95L	M. A. Lea-Wilson, J. N. Lomer, J. A. van Wyk: Philos. Mag. B 72 (1995) 81-89
95N	M. H. Nazaré, P. W. Mason, G. D. Watkins, H. Kanda: Phys. Rev. B 51 (1995) 16741-16745
95P	G. Popovici, M. A. Prelas, T. Sung, S. Khasawinah, A. A. Melnikov, V. S. Varichenko, A. M. Zaitsev, A. V. Denisenko, W. R. Fahrner: Diamond Relat. Mater. 4 (1995) 877-881
95R	J. Ristein, J. Schäfer, L. Ley: Diamond Relat. Mater. 4 (1995) 508-516
95T1	O. D. Tucker, M. E. Newton, J. M. Baker, J. A. van Wyk, G. S. Woods, P. Spear: Diamond Conference Oxford, UK (1995), p. 19.1
95T2	D. F. Talbot-Ponsonby, M. E. Newton, J. M. Baker: Diamond Conference Oxford, UK (1995), p. P20.1
95T3	D. J. Twitchen, M. E. Newton, J. M. Baker, A. Anthony, W. F. Banholzer: Diamond Conference Oxford, UK (1995), pp. P21.1-P21.2
95W1	J. A. van Wyk, O. D. Tucker, M. E. Newton, J. M. Baker, G. S. Woods, P. Spear: Phys. Rev. B 52 (1995) 12657-12667
95W2	J. A. van Wyk, G. S. Woods: J. Phys.: Condens. Matter 7 (1995) 5901-5911
95W3	J. A. van Wyk, G. S. Woods: Diamond Conference Oxford, UK (1995), pp. 18.1-18.2
95Y	A. P. Yelisseyev, V. A. Nadolinny: Diamond Relat. Mater. 4 (1995) 177-185
95Z	X. Zhou, G. D. Watkins, K. M. McNamara Rutledge: Mater. Sci. Forum 196-201 (1995) 825-829
96B	J. M. Baker: Diamond Conference Cambridge, UK (1996), pp. P41.1-P41.3
96C	E. Colineau, A. Deneuville, J. Mambou, E. Gheeraert: Appl. Phys. Lett. 68 (1996) 2123-2125
96D	E. N. Drozdova, N. M. Penina, V. S. Varichenko: J. Chem. Vapor Depos. 5 (1996) 103-108
96G1	C. F. O. Graeff, E. Rohrer, C. E. Nebel, M. Stutzmann, H. Güttler, R. Zachai: Appl. Phys. Lett. 69 (1996) 3215-3217

.

,

96G2	C. F. O. Graeff, E. Rohrer, C. E. Nebel, M. Stutzmann, H. Güttler, R. Zachai: III-Nitride, SiC and Diamond Materials for Electronic Devices, D. K. Gaskill, C. D. Brandt, R. J. Nemanich (eds.), MRS, Pittsburgh, Pennsylvania, USA, 1996, pp. 495-500
96H	D. C. Hunt, M. E. Newton, D. J. Twitchen, J. M. Baker, P. M. Spear: Diamond Conference Cambridge, UK (1996), pp. P42.1-P42.2
961	T. Izumi, Y. Show, M. Deguchi, M. Kitabatake, T. Hirao, Y. Mori, A. Hatta, T. Ito, A. Hiraki: J. Chem. Vapor Depos. 5 (1996) 95-102
96K1	Y. von Kaenel, J. Stiegler, E. Blank, O. Chauvet, Ch. Hellwig, K. Plamann: Phys. Status Solidi (a) 154 (1996) 219-238
96K2	D. J. Keeble, B. Ramakrishnan: Appl. Phys. Lett. 69 (1996) 3836-3838
96L1	M. A. Lea-Wilson, J. N. Lomer: Philos. Mag. A 74 (1996) 685-695
96L2	A. Lenef, S. W. Brown, D. A. Redman, S. C. Rand, J. Shigley, E. Fritsch: Phys. Rev. B 53 (1996) 13427-13440
96L3	A. Lenef, S. C. Rand: Phys. Rev. B 53 (1996) 13441-13455
96N	C. Noble: Diamond Conference Cambridge, UK (1996), p. 18.1-
96R1	E. Rohrer, C. F. O. Graeff, R. Janssen, C. E. Nebel, M. Stutzmann, H. Güttler, R. Zachai: Phys. Rev. B 54 (1996) 7874-7880
96R2	B. Ramakrishnan, D. J. Keeble, H. Rodrigo, A. Kulkarni: III-Nitride, SiC and Diamond Materials for
	Electronic Devices, D. K. Gaskill, C. D. Brandt, R. J. Nemanich (eds.). MRS, Pittsburgh,
	Pennsylvania, USA, 1996, pp. 501-506
9651	Y. Show, M. Iwase, T. Izumi: Thin Solid Films 274 (1996) 50-54
9652	Y. Show, Y. Nakamura, T. Izumi, M. Deguchi, M. Kitabatake, T. Hirao, Y. Mori, A. Hatta, T. Ito, A.
,	Hiraki: Thin Solid Films 281-282 (1996) 275-278
96T1	D. I. Twitchen, M. E. Newton, J. M. Baker, O. D. Tucker, T. R. Anthony, W. F. Banholzer: Phys.
<i>J</i> UI I	Rev B 54 (1996) 6988-6998
96T2	D F Talbot-Ponsonby M F Newton I M Baker G A Scarsbrook R S Sussmann C I H Wort:
JU12	I Phys : Condens Matter 8 (1996) 837-849
96T3	D. J. Twitchen, M. E. Newton, J. M. Baker, T. R. Anthony, W. F. Banholzer: Diamond Conference
96T4	D. F. Talbot-Ponsonby, M. E. Newton, J. M. Baker: Diamond Conference Cambridge, UK (1996), pp.
06775	D I Twitchen M E Newton I M Baker T R Anthony W E Banholzer: Diamond Conference
9015	Cambridge, UK (1996), pp. P33.1-P33.2
9010	Cambridge, UK (1996), pp. P34.1-P34.2
9617	D. J. Twitchen, M. E. Newton, J. M. Baker, T. R. Anthony, W. F. Banholzer: Diamond Conference Cambridge, UK (1996), pp. P35P35.2
96V	V. S. Varichenko, A. A. Melnikov, N. M. Penina, M. A. Prelas, S. Khasawinah, T. Sung, G. Popovici: J. Chem. Vapor Depos. 5 (1996) 109-114
96W1	C. Wei, S. A. Holmstrom, N. B. Manson, J. P. D. Martin, XF. He, P. T. H. Fisk, K. Holliday: Appl. Magn. Reson. 11 (1996) 521-538
96W2	C. Wei, S. A. Holmstrom, N. B. Manson, J. P. D. Martin: Appl. Magn. Reson, 11 (1996) 539-552
96W3	I A van Wyk, E. C. Revnhardt G. L. High: Diamond Conference Cambridge, UK (1996), pp. 191-
06V	19.4 A Valissever V Nadolinny B Feigelson S Terentver S Nosukhin: Diamond Pelat Mater 5
901	(1996) 1113-1117
96Z	X. Zhou, G. D. Watkins, K. M. McNamara Rutledge, R. P. Messmer, S. Chawla: Phys. Rev. B 54 (1996) 7881-7890
97B1	J. M. Baker, D. J. Twitchen, M. E. Newton: Phil. Mag. Lett. 76 (1997) 57-62
97B2	P. R. Briddon, R. Jones, S. Öberg, M. I. Heggie: Diamond Conference Bristol, UK (1997), p. P16.1
97C	E. Colineau, E. Gheeraert, A. Deneuville, J. Mambou, F. Brunet, J. P. Lagrange: Diamond Relat. Mater. 6 (1997) 778-782
97F	K. Fabisiak, F. Rozłoch: Appl. Magn. Reson. 12 (1997) 53-59

74	References for 4.1.3
97G1	J. P. Goss, R. Jones, P. R. Briddon, G. Davies, A. T. Collins, A. Mainwood, J. A. van Wyk, J. M. Baker, M. E. Newton, A. M. Stoneham, S. C. Lawson: Phys. Rev. B 56 (1997) 16031-16032
97G2	C. F. O. Graeff, C. E. Nebel, M. Stutzmann, A. Flöter, R. Zachai: J. Appl. Phys. 81 (1997) 234-237
97I1	J. Isoya, H. Kanda, M. Akaishi, Y. Morita, T. Ohshima: Diamond Relat. Mater. 6 (1997) 356-360
97I2	J. Isoya, H. Kanda, Y. Morita: Phys. Rev. B 56 (1997) 6392-6395
97K	R. Kalish, C. Uzan-Saguy, B. Philosoph, V. Richter, J. P. Lagrange, E. Gheeraert, A. Deneuville, A. T. Collins: Diamond Relat. Mater. 6 (1997) 516-520
97L	A. Lenef, S. C. Rand: Phys. Rev. B 56 (1997) 16033-16034
97N	V. A. Nadolinny, A. P. Yelisseyev, O. P. Yuryeva, B. N. Feygelson: Appl. Magn. Reson. 12 (1997) 543-554
97O	N. Ohashi, O. Fukunaga, J. Isoya, J. Tanaka: Jpn. J. Appl. Phys. 36 (1997) 1126-1131
97S1	Y. Show, F. Matsuoka, S. Ri, Y. Akiba, T. Kurosu, M. Iida, T. Izumi: Defects in Electronic Materials II, J. Michel, T. Kennedy, K. Wada, K. Thonke (eds.), MRS, Pittsburgh, Pennsylvania, USA, 1997, pp. 681-686
97S2	Y. Show, T. Izumi, M. Deguchi, M. Kitabatake, T. Hirao, Y. Morid, A. Hatta, T. Ito, A. Hiraki: Nucl.
	Instrum. Methods Phys. Res. B 127-128 (1997) 217-220
97S3	Y. Show, F. Matsuoka, T. Izumi, M. Deguchi, M. Kitabatake, H. Sakakima, T. Hirao, Y. Mori, A. Hatta, T. Ito, A. Hiraki: Appl. Surf. Sci. 117-118 (1997) 574-577
97T1	D. F. Talbot-Ponsonby, M. E. Newton, J. M. Baker: J. Appl. Phys. 82 (1997) 1201-1204
97T2	D. J. Twitchen, M. E. Newton, O. D. Tucker, J. M. Baker, W. F. Banholzer, T. R. Anthony: Mater. Sci. Forum 239-241 (1997) 107-110
97T3	D. F. Talbot-Ponsonby, M. E. Newton, J. M. Baker, G. A. Scarsbrook, R. S. Sussmann, J. R. Brandon, C. N. Dodge: Mater. Sci. Forum 239-241 (1997) 111-114
97T4	D. J. Twitchen, M. E. Newton, J. M. Baker, T. R. Anthony, W. F. Banholzer: Diamond Conference Bristol, UK (1997), pp. 33.1-33.3
97T5	D. J. Twitchen, M. E. Newton, J. M. Baker, T. R. Anthony, W. F. Banholzer: Diamond Conference Bristol UK (1997) pp. P3.1-P3.3
97W1	I. A. van Wyk, E. C. Revnhardt, G. L. High, I. Kiflawi: J. Phys. D: Appl. Phys. 30 (1997) 1790-1793
97W2	I Watanabe, K. Sasaki, T. Hamaoka: Jpn, J. Appl. Phys. 36 (1997) 2303-2307
98B	J. M. Baker: Diamond Relat. Mater. 7 (1998) 1282-1290
98C	A. T. Collins, H. Kanda, J. Isoya, C. A. J. Ammerlaan, J. A. van Wyk: Diamond Relat. Mater. 7 (1998) 333-338
98M	K. M. McNamara Rutledge: Hydrogen in Semiconductors and Metals, N. H. Nickel, W. B. Jackson, R.C. Bowman, R. G. Leisure (eds.), MRS, Warrendale, Pennsylvania, USA, 1998, pp. 407-417
98N1	C. J. Noble, Th. Pawlik, JM. Spaeth: J. Phys.: Condens. Matter 10 (1998) 11781-11793
98N2	V. Nadolinny, A. Yelisseyev, O. Yurjeva, A. Hofstaetter, B. Meyer, B. Feigelson: Diamond Relat. Mater. 7 (1998) 1558-1561
98P	Th. Pawlik, C. Noble, JM. Spaeth: J. Phys.: Condens. Matter 10 (1998) 9833-9840
98R	E. C. Reynhardt, G. L. High, J. A. van Wyk: J. Chem. Phys. 109 (1998) 8471-8477
98S	E. M. Shishonok, V. B. Shipilo, G. P. Popelnuk, I. I. Azarko, A. A. Melnikov, A. R. Filipp: Materials Lett. 34 (1998) 143-147
98T1	D. F. Talbot-Ponsonby, M. E. Newton, J. M. Baker, G. A. Scarsbrook, R. S. Sussmann, A. J. Whitehead, S. Pfenninger: Phys. Rev. B 57 (1998) 2264-2270
98T2	D. F. Talbot-Ponsonby, M. E. Newton, J. M. Baker, G. A. Scarsbrook, R. S. Sussmann, A. J. Wikitshardi Phys. Rev. B 57 (1008) 2302-2300
0001	W Milenead: Phys. Rev. D 57 (1996) 2502-2509
99B I	J. M. Baker, D. C. Hum, M. E. Newton, D. J. Twhenen, V. A. Nadominy, B. I. Pergerson: Hyperine Interact. 120-121 (1999) 377-381
99B2	J. M. Baker, D. C. Hunt, M. E. Newton, D. J. Twitchen: Radiat. Eff. Defects Solids 149 (1999) 233- 237
99B3	J. M. Baker: Radiat. Eff. Defects Solids 150 (1999) 807-811
99D	G. Davies: Physica B 273-274 (1999) 15-23
99G	U. Gerstmann, M. Amkreutz, H. Overhof: Physica B 273-274 (1999) 632-635

.

- 99I K. Iakoubovskii, A. Stesmans, G. J. Adriaenssens, R. Provoost, R. E. Silverans, V. Raiko: Phys. Status Solidi (a) 174 (1999) 137-143
- 99J K. Johnston, A. Mainwood, A. T. Collins, G. Davies, D. J. Twitchen, J. M. Baker, M. E. Newton: Physica B 273-274 (1999) 647-650
- 99K1 Hyunjung Kim, S. Rodriguez, M. Grimsditch, T. R. Anthony, A. K. Ramdas: Physica B 273-274 (1999) 624-627
- 99K2 Hyunjung Kim, A. K. Ramdas, S. Rodriguez, M. Grimsditch, T. R. Anthony: Phys. Rev. Lett. 83 (1999) 3254-3257
- 99K3 J. K. Kirui, J. A. van Wyk, M. J. R. Hoch: Diamond Relat. Mater. 8 (1999) 1569-1571
- 99K4 Hyunjung Kim, R. Vogelgesang, A. K. Ramdas, S. Rodriguez, M. Grimsditch, T. R. Anthony: Phys. Status Solidi (b) 215 (1999) 109-114
- 99M1 P. W. Mason, F. S. Ham, G. D. Watkins: Phys. Rev. B 60 (1999) 5417-5428
- 99M2 A. Mainwood: Diamond Relat. Mater. 8 (1999) 1560-1564
- 99M3 R. I. Mashkovtsev, Yu. N. Pal'yanov: Solid State Commun. 111 (1999) 397-402
- 99N1 A. J. Neves, R. Pereira, N. A. Sobolev, M. H. Nazaré, W. Gehlhoff, A. Näser, H. Kanda: Physica B 273-274 (1999) 651-654
- 99N2 V. A. Nadolinny, A. P. Yelisseyev, J. M. Baker, M. E. Newton, D. J. Twitchen, S. C. Lawson, O. P. Yuryeva, B. N Feigelson: J. Phys.: Condens. Matter 11 (1999) 7357-7376
- 99N3 V. A. Nadolinny, A. P. Yelisseyev, A. G. Badalyan, J. M. Baker, D. J. Twitchen, M. E. Newton, A. Hofstaetter, B. Feigelson: Diamond Relat. Mater. 8 (1999) 1565-1568
- 99N4 V. A. Nadolinny, A. P. Yelisseyev, J. M. Baker, D. J. Twitchen, M. E. Newton, A. Hofstaetter, B. Feigelson: Phys. Rev. B 60 (1999) 5392-5403
- 99N5 M. Nesládek, K. Meykens, K. Haenen, J. Navrátil, C. Quaeyhaegens, L. M. Stals, A. Stesmans, K. Iakoubovskij, G. J. Adriaenssens, J. Rosa, M. Vaněček: Diamond Relat. Mater. 8 (1999) 1480-1484
- 99N6 V. A. Nadolinny, A. P. Yelisseyev, J. M. Baker, M. E. Newton, D. J. Twitchen, A. Hofstaetter, B. Feigelson: Hyperfine Interactions 120-121 (1999) 341-345
- 99N7 S. V. Nistor, M. Stefan, V. Ralchenko, E. Goovaerts, D. Schoemaker: Radiat. Eff. Defects Solids 149 (1999) 303-307
- 990 T. D. Ositinskaya, V. N. Tkach: J. Mater. Sci. 34 (1999) 2891-2897
- 99R J. Rosa, M. Vaněček, M. Nesládek, L. M. Stals: Phys. Status Solidi (a) 172 (1999) 113-122
- 99T1 D. J. Twitchen, D. C. Hunt, M. E. Newton, J. M. Baker, T. R. Anthony, W. F. Banholzer: Physica B 273-274 (1999) 628-631
- 99T2 D. J. Twitchen, D. C. Hunt, C. Wade, M. E. Newton, J. M. Baker, T. R. Anthony, W. F. Banholzer: Physica B 273-274 (1999) 644-646
- 99T3 D. J. Twitchen, M. E. Newton, J. M. Baker, W. F. Banholzer, T. R. Anthony: Diamond Relat. Mater. 8 (1999) 1101-1106
- 99T4 D. J. Twitchen, M. E. Newton, J. M. Baker, T. R. Anthony, W. F. Banholzer: Phys. Rev. B 59 (1999) 12900-12910
- 99T5 D. J. Twitchen, D. C. Hunt, V. Smart, M. E. Newton, J. M. Baker, T. R. Anthony: Diamond Relat. Mater. 8 (1999) 1572-1575
- 99Y C.-S. Yan, Y. K. Vohra: Diamond Relat. Mater. 8 (1999) 2022-2031
- 00C1 A. T. Collins: Diamond Relat. Mater. 9 (2000) 417-423
- 00C2 N. Casanova, E. Gheeraert, A. Deneuville, C. Uzan-Saguy, R. Kalish: Phys. Status Solidi (a) 181 (2000) 5-10
- 00G U. Gerstmann, M. Amkreutz, H. Overhof: Phys. Status Solidi (b) 217 (2000) 665-684
- 00H1 D. C. Hunt, D. J. Twitchen, M. E. Newton, J. M. Baker, T. R. Anthony, W. F. Banholzer, S. S. Vagarali: Phys. Rev. B 61 (2000) 3863-3876
- 00H2 D. C. Hunt, D. J. Twitchen, M. E. Newton, J. M. Baker, J. K. Kirui, J. A. van Wyk, T. R. Anthony, W. F. Banholzer: Phys. Rev. B 62 (2000) 6587-6597
- 00I K. Iakoubovskii, A. Stesmans, B. Nouwen, G. J. Adriaenssens: Phys. Rev. B 62 (2000) 16587-16594
- 00J K. Johnston, A. Mainwood, A. T. Collins, G. Davies, D. Twitchen, M. Newton, J. M. Baker: Diamond Relat. Mater. 9 (2000) 424-427

76	References for 4.1.3
00K1	Hyunjung Kim, Zdenka Barticevic, A. K. Ramdas, S. Rodriguez, M. Grimsditch, T. R. Anthony: Phys. Rev. B 62 (2000) 8038-8052
00K2	Y. Kawaguchi, I. Watanabe: Jpn. J. Appl. Phys. 39 (2000) 1861-1865
00N1	A. J. Neves, R. Pereira, N. A. Sobolev, M. H. Nazaré, W. Gehlhoff, A. Näser, H. Kanda: Diamond Relat. Mater. 9 (2000) 1057-1060
00N2	V. A. Nadollinny, A. P. Yelisseyev, J. M. Baker, D. J. Twitchen, M. E. Newton, B. N. Feigelson, O. P. Yuryeva: Diamond Relat. Mater. 9 (2000) 883-886
00R	E. C. Reynhardt, G. L. High: J. Chem. Phys. 113 (2000) 744-750
00S1	Y. Show, T. Matsukawa, H. Ito, M. Iwase, T. Izumi: Diamond Relat. Mater. 9 (2000) 337-340
00S2	A. Stesmans, B. Nouwen, K. Iakoubovskii: J. Phys.: Condens. Matter 12 (2000) 7807-7817
00S3	N. D. Samsonenko, V. Sh. Zon, S. N. Samsonenko, I. V. Selskaya: Sverkhtverd. Mater. 22 (2000) 53-61; English translation: J. Superhard Mater. 22 (2000) 49-55
00T1	D. J. Twitchen, M. E. Newton, J. M. Baker, K. Johnston: Phys. Rev. B 61 (2000) 9-11
00T2	C. J. Terblanche, E. C. Reynhardt: Chem. Phys. Lett. 322 (2000) 273-279
00V	I. I. Vlasov, V. G. Ralchenko, A. V. Khomich, S. V. Nistor, D. Schoemaker, R. A. Khmelnitsku: Phys. Status Solidi (a) 181 (2000) 83-90
01B	J. M., Baker: J. Phys.: Condens. Matter 13 (2001) 2053-2060
01C1	N. Casanova, E. Gheeraert, A. Deneuville, C. Uzan-Saguy, R. Kalish: Diamond Relat. Mater. 10 (2001) 580-584
01C2	F. T. Charnock, T. A. Kennedy: Phys. Rev. B 64 (2001) 041201-1-041201-4
01G1	J. P. Goss, B. J. Coomer, R. Jones, T. D. Shaw, P. R. Briddon, S. Oberg: Diamond Relat. Mater. 10 (2001) 434-438
01G2	J. P. Goss, R. Jones, T. D. Shaw, M. J. Rayson, P. R. Briddon: Phys. Status Solidi (a) 186 (2001) 215- 220
01G3	J. P. Goss, B. J. Coomer, R. Jones, T. D. Shaw, P. R. Briddon, M. Rayson, S. Oberg: Phys. Rev. B 63 (2001) 195208-1-195208-14
01I	K. Iakoubovskii, A. Stesmans: Phys. Status Solidi (a) 186 (2001) 199-206
01K	Hyunjung Kim, A. K. Ramdas, S. Rodriguez, Zdenka Barticevic, M. Grimsditch, T. R. Anthony: Physica B 302-303 (2001) 88-100
01N	S. Nokhrin, J. Rosa, M. Vanecek, A. G. Badalyan, M. Nesladek: Diamond Relat. Mater. 10 (2001) 480-484
01P1	R. N. Pereira, W. Gehlhoff, N. A. Sobolev, A. J. Neves, , D. Bimberg: J. Phys. Condens. Matter 13 (2001) 8957-8964
01P2	R. N. Pereira, W. Gehlhoff, N. A. Sobolev, A. J. Neves, D. Bimberg: Physica B, to be published 2001/2002
01 T	D. J. Twitchen, J. M. Baker, M. E. Newton, T. R. Anthony, W. F. Banholzer: J. Phys.: Condens. Matter 13 (2001) 2045-2051
01W1	G. A. Watt, M. E. Newton, J. M. Baker: Diamond Relat. Mater. 10 (2001) 1681-1683
01W2	G. D. Watkins: Phys. Status Solidi (a) 186 (2001) 167-176
02B	J. M. Baker: Proc. XIth Feofilov Symposium, Kazan, Russian Federation, 2001
02G	T. Graf, M. S. Brandt, C. E. Nebel, M. Stutzmann, S. Koizumi: Proc. ICDS-21, Giessen, Germany, 2001, to be published in Physica B
02P	R. N. Pereira, A. J. Neves, W. Gehlhoff, N. A. Sobolev, L. Rino, H. Kanda: Proc. ICDS-21, Giessen, Germany, 2001, to be published in Physica B
	· · · · · · · · · · · · · · · · · · ·